Dual Subdivision

A New Class of Subdivision Schemes Using Projective Duality

Hiroshi Kawaharada and Kokichi Sugihara
Department of Mathematical Informatics Graduate School of Information Science and
Technology, University of Tokyo, Japan
kawarada@simplex.t.u-tokyo.ac.jp,sugihara@mist.i.u-tokyo.ac.jp

ABSTRACT

This paper proposes a new class of subdivision schemes. Previous subdivision processes are described by the
movement and generation of vertices, and the faces are specified indirectly as polygons defined by those vertices.
In the proposed scheme, on the other hand, the subdivision process is described by the generation of faces, and
the vertices are specified indirectly as the intersections of these faces. In this sense, this paper gives a framework
for a wide class of new subdivision methods. In short, the new subdivision is a dual framework of an ordinary
subdivision based on the principle of duality in projective geometry. So, the new subdivision scheme inherits
various properties of the ordinary subdivision schemes. In this paper, we define the dual subdivision and derive

its basic properties.
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1 INTRODUCTION

Subdivision [11, 13, 3, 22, 20] is a well-known
method for geometric design and for computer
graphics, because the subdivision makes smooth
surfaces with arbitrary topology. A subdivision
scheme is defined by subdivision matrices and a
rule of connectivity change. So, many researchers
study the condition of continuity of subdivision sur-
faces depending on subdivision matrices [22, 24, 17,
16, 1, 7, 23, 18, 4]. Moreover, multiresolution anal-
ysis [14, 21, 5] derived by subdivision theory is ex-
tremely useful on mesh editing.

Subdivisions on quadrilateral or triangular
meshes were studied extensively. For example,
the most popular subdivisions are the Catmull-
Clark subdivision and the Loop subdivision [13].
These subdivisions are designed for irregular
quadrilateral or triangular meshes.

Most subdivision methods are for triangular or
quadrilateral meshes; there are only a few methods
for other types of meshes. Some subdivisions on
hexangular meshes were developed [2, 6]. However,
faces generated by these subdivisions are not “flat".

In this paper, we derive new subdivision schemes.
This is the dual framework of an ordinary subdi-
vision based on the principle of duality in projec-
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tive geometry. The proposed dual subdivision can
generate meshes, composed of non-triangular “flat"
faces.

Approximating surfaces using non-triangular flat
faces is a basic problem for computational geom-
etry. If the surface is convex, the approximation
is easy. However, if the surface is not convex, the
approximation can not be completed yet [19]. This
dual subdivision schemes overcome this problem.

The dual subdivision is a wide class of new sub-
divisions. The dual subdivision generates faces by
subdivision matrices. The subdivision matrices are
shared between an ordinary subdivision and the
corresponding dual subdivision. So, the dual sub-
division has properties similar to the ordinary sub-
division. In this paper, we explain such properties.

Levin and Wartenbarg [12] already proposed
some dual schemes. However, their schemes are
convexity-preserving interpolations. In first place,
dual subdivision can naturally represent surfaces
with arbitrary topology. Our framework enables it
by “inflection plane".

From the mathematical view point, in ordinary
subdivisions, basis functions are attached to ver-
tices. In dual subdivisions, basis functions are at-
tached to faces (equations of faces). Moreover, in
line subdivisions [10], basis functions are attached
to edges (the Klein image of edges [15, 8]). So,
dual subdivision is an important element of subdi-
visions.

2 ORDINARY SUBDIVISION

In this section, we review a general subdivision.
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2.1 Subdivision Matrix

A subdivision scheme is defined by subdivision ma-
trices and a rule of connectivity change. The sub-
division scheme, when it is applied to 2-manifold
irregular meshes, generates smooth surfaces at the
limit. Fig. 1is an example of the Loop subdivision.
In this figure, (a) is an original mesh; subdividing
(a), we get (b); subdividing (b) once more, we get
(c); subdividing infinite times, we get the smooth
surface (d). We call (d) the subdivision surface.
Here, a face is divided into four new faces. This is
a change of connectivity. In this paper, the change
of connectivity is fixed to this type, but other types
of connectivity change can be argued similarly.

(G]]

Figure 1: Loop subdivision [21].

Next, let us consider how to change the positions
of the old vertices, and how to decide the positions
of the new vertices. They are specified by matrices
called “subdivision matrices". The subdivision ma-
trices are defined at vertices and they depend on
degree k of the vertex (the degree is the number of
edges connected to the vertex). For example, Fig.
2 denotes a vertex vj which has five edges. Let
v{, v%, e ,vg be the vertices at the other terminal
of the five edges. Then, subdivision matrix Sy is
defined as follows:

- .

v(j)Jr v}

) )

vt ; vy
= SS

J+1 J

Us Us

Figure 2: subdivision matrix.

Here, the subdivision matrix Sg is a square ma-
trix. j means j-th step of the subdivision. Here,
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neighbor vertices of a vertex v are called vertices
on the 1-disc of v. The subdivision matrix is gen-
erally defined not only on vertices in the 1-disc, but
also on other vertices in 2-disc, 3-disc, ---. Here,
we argue only subdivision matrices that affect ver-
tices in the 1-disc. However, we can argue other
subdivision matrices, similarly. In this paper, we
assume that the subdivision matrix is independent
on j. A subdivision scheme of this type is called
“stationary".

In this way, subdivision matrix S} is written for
a vertex. However, since a newly generated ver-
tex is computed by two subdivision matrices at the
ends of the edge, the two subdivision matrices must
generate the same location of the vertex. So, the
subdivision matrices have this kind of restriction.

The degree k of a vertex is at least two. A vertex
whose degree is two is a boundary vertex. The
degree of a vertex of 2-manifold meshes is at least
three. In this paper, we do not argue boundaries of
meshes. So, we assume that the degree is at least
three.

As seen above, a stationary subdivision scheme is
defined by subdivision matrices Sy (k > 3). Then,
from the theorem 2.1 in [1], the regular limit sur-
face of subdivision f : |K| — R? is the following
parametric surface:

flpl(y) = ZUNZ‘(Z/),
v; € R3a ¢z(y) € R7 AS |K|,p= (Uo,vl,---)—r7

where K is a complex, |K| is a topological space,
that is, the mesh, y is a local two-parameter, that
is, locally y = (y1,¥2), ¢ is an index of a vertex, v;
is the position of the i-th vertex, ¢;(y) is the weight
function with the i-th vertex. Moreover, the weight
function ¢;(y) is dependent only on the subdivision
matrices. In what follows we assume that the sum
of element in each row of the subdivision matrix
is equal to 1. Here, the operation for generating
the vertices of the j + 1-st step of the subdivision
from the vertices of the j-th step is affine invariant;
it does not depend on the origin of the coordinate
system.

Here, we denote ¢(y) = (¢o(y),¢1(y),---)-
Then, ¢(y) decides a set of representable surfaces.
Then, the set is spanned by ¢(y). So, we call the
weight functions basis functions. The limit surface
of the subdivision is a point in such a functional
space.

3 DUAL SUBDIVISION

Here, we propose a dual subdivision method.

ISBN 80-86943-03-8



3.1 Dual Transformation

The transformation (pa,py, Dz, Pw) < Pa + Dyy +
Pz — ppw = 0 is a well-known duality called
projective duality in P3. In this paper, we use
(a,b,c¢) < ax + by + cz — 1 = 0 which is a pro-
jective duality. We denote this duality by D, that
is, for a point p, D(p) represents its dual plane, and
for a plane h, D(h) represents its dual point. Here,
the transform satisfies the following properties:

e When a point p is on a hyperplane h, and only
then, the point D(h) is on the hyperplane D(p).

e When a point p exists in the upper (lower) half-
space partitioned by a hyperplane A, the point
D(h) exists in the upper (lower) half-space par-
titioned by the hyperplane D(p). Here, a lower
half-space means the half-space which has the
origin and the upper half-space means the other
(the half-space does not contain the separating
plane.).

3.2 Definition of Dual Subdivision

The ordinary subdivision is specified by how the
vertices are generated and located. On the other
hand, the dual subdivision, which we will define
here, is specified by how the faces are generated
and located.

We assumed that the sum of each row of the sub-
division matrix is 1.

Here, p? is a column vector of vertices at the j-
th subdivision step. Using a subdivision matrix .S,
pI+1is written as:

P =8y,
where
Pow Doy P
Pl Dly, DPl.

p =

Therefore, if we denote

Phe Phy Pos L
j J J J 1
f = Dig ply D1z

we get
fi =g,

where the elements of each row of f7 are coefficients
of the equation p],x + p/,y +pj,z — 1 = 0. There-
fore, the equations of planes are subdivided. These
equations are the dual of vertices (pj,,pj,, p}.)- So,
this subdivision is a dual framework of ordinary
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subdivision. Moreover, dual subdivision can be
defined by a projective duality (ps,py,Dz,Pw) <
P2 + pyy + pez — ppw = 0.

Now, for any triangular mesh M, using the dual-
ity, we get a dual mesh D(M). Here, if the degree
of a vertex v of M is k, then v is the intersec-
tion of faces f;, i = 1,2, - ,k, so these vertices
D(f:), i =1,2,-- ,k is on the face D(v). So, we
get following observation:

Observation 3.1 (Dual mesh)
If the degree of the vertex v of M is k, the face
D(v) of D(M) is a k-gon.

Note that even if meshes in primal space are
bounded, dual meshes are not necessarily bounded.
First, clearly, dual meshes depend on the origin in
primal space. A point aa + $b on a face p is the
convex combination of neighbor vertices a,b. So,
we can see the plane D(aa+ 8b) = aD(a)+ 8D(b)
is a tangent plane of D(p). Thus we can define the
tangent plane of D(p) as convex combinations of
tangent planes of the neighborhood (See the upper
figure in Fig. 3.). If a tangent plane ap + (g of
a vertex contains the origin in primal space, then
the vertex D(ap + fq) is a point at infinity, and
so the face, which has vertices D(p), D(q), is not
bounded (See the lower figure in Fig. 3.). There-
fore, we want to know the condition for dual meshes
and dual subdivision surfaces to be bounded. So,
we derived a necessary and sufficient condition for
dual meshes and a sufficient condition for dual sub-
division surfaces in [9].

Here, we define the rule of connectivity change of
dual subdivision. The connectivity change of dual
subdivision is defined as dual of the connectivity
change of ordinary subdivision (See Fig. 4).

So, we get following observation.

Observation 3.2 (Dual subdivision)

Applying ordinary subdivision to meshes in the
primal space is dual of applying dual subdivision
to dual meshes in the dual space.

Here, we can see that if meshes made by ordi-
nary subdivision approximate surfaces very well,
dual meshes made by dual subdivision approximate
dual surfaces very well, too. Thus, dual subdivision
has a useful property that it can represent surfaces
by “flat" polygons on non-triangular meshes, for
example, hexagonal meshes.

3.3 Properties of Duality

In this subsection, we explain an important prop-
erty. The property is based on dual transformation
(a,b,¢) < ax + by + cz — 1 = 0 and 2-manifold.
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aa+ b

Figure 3: Tangent planes of a vertex. In the upper
figure, we can see the tangent plane of a vertex
as convex combinations of tangent planes of the
neighborhood. So, if a tangent plane ap + (¢ con-
tains the origin, D(ap + Bq) is a point at infinity.
Therefore, the face is not bounded. Here, ¢ is a
plane —p,x — pyy — p.2z + 1 = 0 whose normal
iS (—pw, —py, —p-). If we write the equation of ¢
as pyr + pyy + p.z — 1 = 0, then the normal is
(pa, Py, p-) (this normal is denoted by the dashed
arrow). We consider that meshes have continuous
normals, that is, meshes are oriented. Thus, we
define the equation of ¢ as —p,z—pyy—p.2+1 = 0.
Then, the un-bounded face is convex combina-
tions of D(p) and D(q), too.

So, the property holds independently of the dual
subdivision.

Here, we denote a regular 2-manifold in the pri-
mal space as S, the dual shape of S as D(S). Points
of D(S) are the dual of tangent planes of S. Tan-
gent planes of D(S) is the dual of points of S. We
can see D(S) as an envelope surface defined by the
dual of points of S. Here, “flat" means that the
points of the subset of a surface share a tangent
plane.

In this paper, we assume that a 2-manifold is
connected and has a finite genus.

First, we get following proposition.

Proposition 3.1 (Duality of 2-manifold)

If S is a bounded and regular 2-manifold, and if
any subset of S and D(S) are not flat, then D(S)
is a 2-manifold.

Proof First, any bounded and regular 2-manifold
S in the primal space has an open covering which
is composed of a finite number of open sets whose
topology is equal to that of a disc. Moreover, this
dual transform is a continuous and one-to-one map-
ping. So, the open sets are mapped to open sets of
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Figure 4: The duality between ordinary subdivision
and dual subdivision. Upper left drawing is a sur-
face which has saddle points. Upper right drawing
is the dual surface. Middle right picture is a trian-
gular mesh made by plotting points on upper right
surface. Middle left mesh is the dual mesh of the
middle right mesh. we get lower right mesh made
by ordinary subdivision for the middle right mesh.
On the other hand, we get lower left mesh made
by dual subdivision for the middle left mesh. Then,
the lower left mesh is the dual mesh of the lower
right mesh. Dual subdivision is defined as such.
Like this, dual subdivision can represent surfaces
which have saddle points.

tangent planes in the dual space. Since any subset
of S is not flat, an envelope surface made by an
open set of tangent planes is an open set of points
in the dual space. Therefore, the dual surface of
the open covering is represented by a union of open
sets. Since the open covering is composed of a fi-
nite number of open sets, the dual surface of the
open covering is an open set. Moreover, there is an
open covering whose union is equal to S. So, the
dual surface of this open covering is equal to D(.S).
Therefore, there are open sets, whose topology is
equal to that of a disc, at any point of D(S). So,
D(S) is a 2-manifold. O

D(S) is generally not a 2-manifold even if S is
a 2-manifold. For example, if S is a plane, then
D(S) is a point, because a subset of S is flat. For
example, a plane is totally flat, a face of a mesh is
flat, the top and bottom circle of a torus are flat.
So, flat parts make degenerations for dual shapes.
If the degeneration does not break the structure
of 2-manifold of dual surfaces, we can easily make
the degenerated surface. Otherwise, we must use
special subdivision matrices and a rule of connec-
tivity change to represent the degenerated surface.
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Therefore, in this paper, we discuss non-degenerate
surfaces.

4 INFLECTION PLANE
4.1

We will discuss the smoothness of the limit surfaces
of dual subdivision and show the duality of smooth-
ness Cfginary < Cduar 0 P3. However, to show
the relation, we need a condition. In this section,
we talk about the condition.

Even if a dual surface in the dual space is smooth
and if any subset of the surface is not flat, the asso-
ciated surface in the primal space is not necessarily
smooth. (However, the continuity of tangent planes
is guaranteed.) For example, see Fig. 5.

Inflection Point

4 ,

Figure 5: The left object in 2D has inflection points.
The right object, which is the dual of the left ob-
ject, has reversals of the normal at dual inflection
points. In 3D, such thing happens, too.

Although the dual curve in the dual space is
smooth, we see that the corresponding curve is not
smooth in the primal space. This arises from re-
versals of normals at the dual of inflection points.

Here, we define an “inflection point" of surfaces
in R3. We call a point p an “inflection point" if a
cross-sectional curve of the surface at p (the cross-
sectional curve is the intersection of the surface and
a plane through p and the origin.) has the inflection
point p.

Thus, if the C! dual surface has inflection points,
the associated surface in the primal space is not
C'-continuous.

Consider the neighborhood of a point. We can
classify the neighborhood to convex, concave, in-
flection. As seen above, inflection parts break the
smoothness. On the other hand, the others do not
break it.

4.2

To overcome this problem, we use a technique
named “inflection plane".

First, we get a mesh in the primal space as Fig. 6.
Applying smooth subdivision scheme to this mesh,
the limit curve in primal space is smooth. So, the
limit curve is not equal to the target shape in Fig.

Inflection Plane
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6. Therefore, dual of the limit curve of this mesh
is not equal to the left shape in Fig. 5.

Even if the original mesh in the primal space
approximates the right shape very well, the limit
curve in the primal space does not have reversals
of normals. So, the curve is not equal to the target
shape.

Figure 6: A mesh in primal space.

So, we want to generate the surface with reversals
of normals by subdivision in the primal space.

Here, we define an “inflection plane". We add
two-ply faces AB,A’B,--- as shown in Fig. 7.
These added faces generate the reversals of nor-
mals, because the basis function at point B is the
delta function (Here, we assume all supports of ba-
sis functions are 1-disc. Then, the limit curve of the
mesh to which AB, A’B is added is tangent plane
continuous.).

Like this, the two-ply face AB, A’ B generates the
dual of the tangent plane at an inflection point in
the dual space. Moreover, the tangent plane at B
is the dual of an inflection point in the dual space.
So, we call the two-ply face AB, A’B an “inflection
plane".

,0—-\\."'!'
e T

Figure 7: Adding an inflection plane AB, A’B. We
conform the position of vertex A’ to that of vertex
A. So, both meshes have the same topology. We
call the two-ply face AB, A’ B “inflection plane".

If all supports of those are over 2-disc, we add
points C,D,---. Then, we get the limit surfaces
with tangent plane continuity and reversals of nor-
mals.

Similarly, using inflection planes, we can get
smooth surfaces which have inflection points in
dual space (see Fig. 8).

ISBN 80-86943-03-8



Figure 8: The left mesh which is made by dual
subdivision is the dual of the right mesh and not
convex and has inflection points. The right mesh
which is made by ordinary subdivision using inflec-
tion plane has dual inflection points.

5 DUALITY OF SMOOTHNESS

In this section, we derive the relation Ccl)rdinary &
Clua in P3. Then, we can get smooth dual limit

surfaces.

Proposition 5.1 (Duality of smoothness)

Assume that S is a bounded and regular 2-
manifold and any subset of S and D(S) are not
flat. Then D(S) is tangent plane continuous if and
only if S is tangent plane continuous. Moreover, if
S and D(S) have no inflection points, then D(S)
being C'-continuous is equivalent to S being C-
continuous.

Proof Since S is tangent plane continuous, points

of D(S) are continuous. Moreover, any subset of S
is not flat. So, the dual of tangent planes of S is
non-degenerate. Here, points of S are continuous.
So, tangent planes of D(S) are continuous. There-
fore, D(S) is tangent plane continuous. Similarly,
since D(S) is tangent plane continuous, points of
S are continuous. Moreover, any subset of D(S)
is not flat. So, the dual of tangent planes of D(S)
is non-degenerate. Here, points of D(S) are con-
tinuous. So, tangent planes of S are continuous.
Therefore, S is tangent plane continuous.

If S and D(S) do not have inflection point, then
D(S) is C'-continuous if S is C'-continuous. Be-
cause, locally the neighborhood of a point of S is
convex or concave. So, the neighborhood does not
reverse normals of D(S). O

To get smooth D(S) which has inflection points,
we must use the inflection plane.

5.1

Next, we derive an important theorem for smooth-
ness of limit surfaces.

Properties of Dual Subdivision
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Theorem 5.1 (Duality of smoothness)

Assume that there are local parameterizations,
which have Jacobi matrix of maximal rank 2 ex-
cept at extraordinary points, on basis functions
of ordinary stationary subdivision, and there are
unique tangent planes at extraordinary points, and
any subset of the limit surface is not flat, and the
limit surfaces of ordinary and dual subdivision have
no inflection points. Then, the limit surfaces of the
dual subdivision are C'-continuous if and only if
the limit surfaces of the ordinary subdivision are
C'-continuous:

1 1
C(ordinary e C(dual .

Proof For any basis function generated by ordi-
nary stationary subdivision, if Jacobi matrix is de-
generate at a point on the basis function except the
extraordinary point, then Jacobi matrix is degen-
erate at any point of the basis function. Then,
Jacobi matrix is degenerate on the part, which
corresponds to the basis function, of the subdivi-
sion surface except a finite number of extraordinary
points. So, Jacobi matrix of maximal rank 2 except
at extraordinary points means that Jacobi matrix
is non-degenerate at any point of the surface gener-
ated by ordinary subdivision except extraordinary
points. Therefore there are unique tangent planes
of the limit surface of ordinary subdivision except
extraordinary points. Here, there are unique tan-
gent planes at extraordinary points. So, there are
unique tangent planes of the surface generated by
ordinary subdivision. Thus, any subset of D(S) is
not flat. Moreover, any subset of the limit surface
is not flat. Therefore, by proposition 5.1, we get
this theorem. O

In this way, we can guarantee the smoothness of
dual limit subdivision. So, we can use the dual
subdivision scheme for applications, e.g. approxi-
mating shapes.

6 CONCLUSION

In this paper, we proposed a new subdivision
method. This is a dual framework of ordinary
subdivision based on the projective duality. Be-
cause of the duality, dual subdivision has useful
properties similar to ordinary subdivision.

First, we derived the duality of 2-manifold. Thus,
we can see that the dual limit surface is 2-manifold.

Second, we defined an “inflection plane". Using
the inflection plane, we can represent smooth sur-
faces with inflection points by dual subdivision.

Finally, we derived the relation CJ ginary ©
Cl,a;- This duality of smoothness enables us to
represent smooth surfaces by “flat" non-trigonal
polygons.
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Moreover, we can lead multiresolution analysis
[21] for dual subdivision. It is useful for the mesh
editing, watermarking, etc..

For higher-order smoothness, refer to our techni-
cal report [9]. In the technical report, we derived
conditions for the limit surface of dual subdivision
surfaces to be C*-continuous. Using “universal sur-
face" [24], we derived relations of smoothness be-
tween ordinary subdivision and dual subdivision.
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