
Interpretation of Overtracing Freehand Sketching for
Geometric Shapes

Day Chyi Ku
School of Engineering and Design

Brunel University
Uxbridge

 UB8 3PH, UK

Daychyi.Ku@brunel.ac.uk

Sheng-Feng Qin
School of Engineering and Design

Brunel University
Uxbridge

 UB8 3PH, UK

Sheng.Feng.Qin@brunel.ac.
uk

David K. Wright
School of Engineering and Design

Brunel University
Uxbridge

 UB8 3PH, UK

David.Wright@Brunel.ac.uk

ABSTRACT
This paper presents a novel method for interpreting overtracing freehand sketch. The overtracing strokes are
interpreted as sketch content and are used to generate 2D geometric primitives. The approach consists of four
stages: stroke classification, strokes grouping and fitting, 2D tidy-up with endpoint clustering and parallelism
correction, and in-context interpretation. Strokes are first classified into lines and curves by a linearity test. It is
followed by an innovative strokes grouping process that handles lines and curves separately. The grouped
strokes are fitted with 2D geometry and further tidied-up with endpoint clustering and parallelism correction.
Finally, the in-context interpretation is applied to detect incorrect stroke interpretation based on geometry
constraints and to suggest a most plausible correction based on the overall sketch context. The interpretation
ensures sketched strokes to be interpreted into meaningful output. The interface overcomes the limitation where
only a single line drawing can be sketched out as in most existing sketching programs, meanwhile is more
intuitive to the user.

Keywords
Freehand sketching, multistroke sketching, calligraphic interface, design

1. INTRODUCTION
Sketch interface is an important, natural application
to support conceptual design. A sketch system
implemented in a computer has the advantage
whereby further manipulations and processing, such
as 3D modelling from 2D sketch, can be made
directly with minimal steps within a short time.
However, this is realistic only if the system allows
the flexibility of transferring ideas directly from
designers through a series of freehand sketch. To
support this process, the system should provide an
interface that is natural to the user as sketching with
pen and paper. Users may find sketching with
extensive menus difficult as a result of frequent
interruptions.

On the other hand, the system will also need to be
able to correctly interpret the user’s intent from the
drawing of the sketch. A trade-off is often required in
the design of the calligraphic interface between being
natural, easy-to-use, and that of accuracy of the
system’s interpretation of user’s intent.
One problem in the design of a natural but accurate
calligraphic interface is that of interpreting
overtracing of freehand sketch. Overtracing is
frequently used to enhance and complete an edge
during freehand sketching. A system that supports
overtracing, i.e., accepts multiple stroke inputs, has
the advantage of providing more drawing freedom to
the user. However, at the same time, overtracing
further increases the number of possible
interpretations of a sketch, and as such, making the
system more susceptible to making mistakes in
interpreting the user’s actual intent.
In this paper, we are concerned specifically with the
interpretation of overtracing freehand sketches of
geometric objects. Although there are sketch systems
that support overtracing inputs, they do not actually
interpret them [FIO02a, GRO00a, KAR05a], or
provide limited interpretations (e.g., only supports
certain sketching primitives or has a very strict

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-86943-03-8
WSCG’2006, January 30-February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

WSCG2006 Full Papers proceedings 263 ISBN 80-86943-03-8

definition of how a sketch is interpreted) and as such,
not applicable to general cases [MIT02a, SHE04a].
Here, we developed a system that supports and
interprets overtracing freehand sketch of general
geometric objects (Figure 1). The work presented in
this paper is a part of our on-going project that is
aimed at reconstructing 3D models from 2D
sketches. The preliminary system is developed to
address the problem of interpreting overtraced
strokes, i.e., multiple strokes that are part of the same
geometric primitives.

Figure 1: A freehand sketch with overtracing and

its tidy-up output from our system.
There are two important differences between our
system and other earlier, calligraphic interface
systems such as in [MIT02a, SHE04a]. First, our
system supports and interprets both straight-line and
curve overtracing sketches. In [SHE04a], the system
can only interpret straight-line input. Second, our
system interprets overtracing strokes with various
curvatures and represents them in parametric
equations that best represent the strokes. In
[MIT02a], the overtracing strokes are represented by
polylines after grouping into core curves and only
curves with low curvatures are showed in their
examples.
Furthermore, some of the systems impose frequent
interruptions to users during the sketching process.
This is normally associated with interactive systems
that prompt users for selection of choices [IGA97a].
The frequent interruptions can be a source of
distractions that can impede the flow of thoughts of
the designer, and as such, should be addressed in the
design of a calligraphic interface.
Therefore, the interpretation process in our system is
carried out automatically and designed to have
minimum interruption to the user. To achieve this,
we designed the system to carry out the interpretation
process between sketching sessions rather than
interrupting the user during sketching for further
inputs to clarify ambiguous cases. This allows a user
to draw in a more intuitive and natural way without
diverting attention from the sketching flow.

2. RELATED WORKS
Computer calligraphic interface has been receiving
more attention over recent years. However, despite

the availability of hardware such as the stylus tablet,
there are still many problems left to be solved in the
development of a full-fledged, functional free-hand
sketching calligraphic interface, such as
interpretation of multiple strokes, in-context
classification and clustering of strokes, inferring
constraints from freehand sketches for tidy-up and
beautification.
Perhaps Pavlidis [PAV85a] made the first attempt to
infer constraints from initial freehand sketch to
automatically tidy-up rectilinear drawings. However,
the method is bound to produce unintended and
undesirable results in practice and negative
constraints were suggested to address the problem
[PAV85a]. Similarly in Easel [JEN92a], Jenkins and
Martin developed a system that can automatically
analyze and tidy-up sketches. Easel introduced more
constraints and processed freeform curves [JEN92a].
Pegasus [IGA98a, IGA97a] is a prototype system for
beautification of freehand sketching through an
interactive process. The system generates several
candidate strokes based on geometry constraints for
user selection. This interaction process is to ensure
that the resulting sketch is as closely desired by the
user, i.e., the precise and correct sketch that the user
had in mind but unable to accurately draw himself.
However, the process of selecting candidates, stroke-
by-stroke, is somewhat distracting to the user.
Consequently, the system is not suitable for
conceptual design sketching, where the designer
must be allowed to sketch without interruption to
ensure a continuous flow of ideas.
In addition to the tidy-up process, there are other
research efforts focused on sketch interpretation
problems such as the strokes classification and
clustering. For example, Shpitalni and Lipson
[SHP97a] presented a method for classifying input
strokes in an online sketching system that is based on
linear least squares fitting to a conic section equation.
They also introduced new endpoints clustering
scheme based on adaptive tolerances [SHP97a]. Qin
[QIN00a] introduced a system that classified strokes
using adaptive threshold and fuzzy knowledge with
respect to curve’s linearity and convexity. After that,
2D primitives are identified and a 2D relationship
inference engine is used to study their relationship
for 3D recognition.
Although advances have been made in developing a
functional calligraphic interface for freehand
sketching, in general, most of the current 2D
freehand sketch interpreters have the limitation of
either not supporting overtracing sketches [JEN92a,
IGA98a, IGA97a, PAV85a, QIN00a, QIN00b,
SHP97a], or have limited support ([SHE4a],
[MIT02a]). SMARTPAPER [SHE4a] groups
overtracing strokes into segments. The grouping

WSCG2006 Full Papers proceedings 264 ISBN 80-86943-03-8

process was carried out in two passes where the
distance between end points and the slopes of the
strokes are checked against each other. However,
SMARTPAPER is limited to straight-line input with
limited configurations only. Furthermore the system
does not support curves input. There is no discussion
of wrongly drawn lines correction and hence it is
assumed that the system is limited to interpret
sketches with correct strokes. 3D SKETCH
[MIT02a] supports both overtracing and hatching
sketch. Strokes are divided into core strokes (strokes
that touch the characteristic curves of the object), and
hatching strokes (strokes that are mapped to the faces
of the object). Although the system can interpret
overtracing strokes (e.g., by grouping strokes into
bundles), there is no explanation of how the
characteristic strokes are distinguished from the
hatching strokes. Furthermore, the system used
polylines to represent the core curve limited its
accuracy in representing curves with higher
curvature.
There are other sketch systems that support
overtracing strokes but do not interpret them as part
of the sketch. In [GRO00a], the system filters out
overtraced lines to produce simpler, approximated
drawings (e.g., filtering out elements that are smaller
than a specified size) rather than performing
interpretations in the context of the sketch as a
whole. In [KAR05a], the sketch recognizer allows
overtracing symbol recognition based on image
processing techniques, e.g., it relies entirely on the
symbol libraries for the recognition where the sketch
is examined in pixel and hence no work is done on
interpretation of individual stroke. In [FIO02a],
overtracing is used to edit an existing stroke that is
represented in cubic Bezier splines. The movements
of oversketching is sampled and interpreted
specifically as transformation attractor to the
underlying curve’s control points. The overtracing
strokes are used as gesture input to alter the existing
sketch rather than sketching information that actually
add more lines to the existing sketch.
In this paper, we propose an interactive calligraphic
interface that addresses the limitations discussed
above. Referring to the systems discussed above, we
use Qin’s curve classification, Shiptalni and Lipson’s
conic fitting equation, and others geometry
constraints as the backbone of our system to interpret
and tidy-up freehand sketch. However, stroke pre-
processing, i.e., segmentation, is not covered in this
paper. All input strokes are taken to represent only a
segment or part of a segment. However, the system
here can be easily extended to include pre-processing
algorithms for segmentation such as those described
in [QIN00b, SEZ01a].

3. SYSTEM OVERVIEW
We propose the interpretation of overtracing strokes
by carrying out a set of tests automatically to group
and tidy up the sketched strokes into segments. The
output of the system is edge-vertex graph with initial
sketched strokes associated to the edges. The graph
can be transferred into CAD or 3D modelling
systems for further processing and manipulation
while the edges can be reproduced in sketchy style
with the sketched strokes information. Another
advantage to our proposed system is that the new
edges that looked similar to the original sketching
style can be produced from the information obtained
during the sketching process. However, for this
paper, we focus only on planar objects and objects
with ellipsoidal curves for inputs to reduce the
system’s bounds in producing unintended and
undesirable result. Additional work is needed to
extend the system to support the interpretation B-
spline curves and freeform objects.
Interruptions such as prompts for clarifying
ambiguous strokes are made at the end of the
drawing session. For example, our system prompts
the user to decide whether an ambiguous stroke
should be deleted or kept with the existing drawing
only at the end of the drawing session.
The system can take in the sketch directly from the
user through a tablet with a digital pen or mouse. A
stroke is a set of points that is captured during the
period when the mouse button is pressed down,
moved, and released. An edge refers to the
intersection of two faces of a solid object, which in
2D drawing is represented by strokes. In many
drawings an edge is often composed of a set of
discontinuous strokes. The overtracing strokes are
used to complete, correct or enhance an edge in the
sketch. The strokes will be processed by the 2D
sketch interpreter and automatically grouped together
to represent the associated edges.
The 2D sketch interpretation is divided into five
stages: grouping and fitting of strokes, end points
clustering, parallelism correction, in-context
interpretation and user interactive selection. First, all
classified strokes (using the linearity test) will be
grouped according to their positional relations. After
that, the grouped strokes are fitted collectively into
an appropriate parametric equation in the least square
sense. A tidied-up sketch will be produced from the
equations. Lastly, lines with similar gradients (within
some tolerance levels) are adjusted to be parallel to
each other, thus reflecting the user intention because
it is not possible for the user to draw exactly parallel
edges in freehand sketch. When there are strokes that
cannot be interpreted correctly according to
geometry constraints, the system will tag the strokes
as ambiguous cases. The system only prompts the

WSCG2006 Full Papers proceedings 265 ISBN 80-86943-03-8

user for further action and correction of the
ambiguous cases at the end of the drawing session.
After the interpretation process, the system is then
able to generate tidied-up 2D single line drawing,
while at the same time, still have initial sketchy
strokes linked to the appropriate tidied-up edges.

4. CLASSIFITION AND GROUPING
4.1 Stroke Classification
All drawn strokes will be classified into either one of
the categories, straight-lines or curves. The linearity
test is used to classify a straight-line from a curve
[QIN00a]. It is simpler and faster compared to the
conic curve equation used in [SHP97a]. This is
because the linearity test involves only a simple
calculation of two parameters, while the conic curve
equation requires the calculation of five parameters
in the quadratic equation.
The linearity is defined as the ratio of the distance
between two endpoints of a stroke to the
accumulative chord length between sequences of
points captured.
The linearity value is a floating point between zero to
one. A greater linearity value for a stroke indicates
that the stroke is more likely to be a straight-line
rather than a curve. An ideal straight-line will have
unity linearity, which rarely happened in freehand
sketching. Therefore, we set an arbitrary straight-line
tolerance for the classification.
Each classified stroke will be fitted either into a
general straight-line equation to generate a straight-
line, or a general conic curve equation to generate a
curve. With equations, strokes can be represented in
a more general and effective way compared to using
a list of points. Furthermore, the representation of
input strokes with parameterised equations allow for
more effective and efficient tests of input strokes
during the interpretation process.

4.2 Strokes Grouping and Fitting
The strokes grouping process groups sketched
strokes into the appropriate edges that they represent.
However, the grouping process only tries to group
strokes in the same category, i.e., lines only grouped
with lines, and curves only grouped with curves. The
grouped strokes are fitted with equations to obtain
parameters that best represent them.

4.2.1 Line Segment Grouping and Fitting
A straight-line is approximated by fitting data points
of the strokes into a line equation that give the
minimum least-square error [ONE83a]. The fitted
line end points are the points on the equation that
have the minimum Euclidian distance from the
sketched stroke end points. All straight-lines will be
tested to determine whether they should be grouped

together to represent the same edge. The line
segments will be grouped together if they are close in
position and orientation to each other.

4.2.1.1 Distance Tests
A series of distance tests is used to determine the
smallest distance between two line segments. The
tests are carried out in sequence as follows:
1) Get the smallest Euclidean distances between

endpoints of lines A and B (Figure 2). The
resulting distance is compared with a threshold
value. The threshold value represents the largest
tolerance of the distance between two line
segments to be grouped together. The threshold
value varies according to the lines’ length, as in
[SHP97a]. If the two line segments (A and B)
pass the threshold test, go to the angular test,
otherwise go to step 2.

2) Calculate the perpendicular Euclidean distances
from line endpoints of one line to the other line
segment, as shown in Figure 2. Eliminate the
distances that corresponding projection points
are out of the other line segment, e.g., (a) and (d)
in Figure 2. Compare the smallest distance
among the remains, (b), with a threshold value.
If the distance is smaller than the threshold, go
to the angular test. Otherwise the two line
segments are grouped into separate edges.

Figure 2: Distance calculated between A and B.

4.2.1.2 Angular Test
The Angular test is to ensure that strokes grouped as
one edge are pointing in the same direction.
The absolute dot product value, which is the smallest
angle between the lines A and B, is calculated. The
two lines will be grouped into one segment if the
angle is smaller than a threshold value. The threshold
value is adjusted according to the longest length of
the lines A and B. The value is calculated to be
inversely proportional to the length of the
corresponding line, e.g. the longer line will have a
smaller threshold value. This is because the longer
length of lines will “look” more apart than shorter
line with the same angle.
The lines do not have to intersect, or overlap each
other to be grouped together. The grouped strokes
will undergo another round of straight-line least-
square fitting to update its equation and endpoints
(Figure 3).

(a)
(c) (b)

(d)
s2 s1

e1

e2

A

B

WSCG2006 Full Papers proceedings 266 ISBN 80-86943-03-8

 (a) (b) (c)

Figure 3: Line Grouping: (a) Initial sketch; (b)
Grouped sketch; (c) Fitted result.

We assume that earlier drawn stroke is more likely to
represent an edge position and orientation, while
strokes drawn later are the overtracing to enhance or
complete the edge. Therefore, earlier drawn stroke is
used as reference to test against candidate strokes to
determine if the strokes should be grouped into the
edge. If a candidate stroke fails the tests for all
existing edges, then it will be grouped as a new edge
and used as reference for the edge.

4.3 Curve Grouping and Conic Fitting
Strokes classified as curves by the linearity test will
undergo the curve fitting process before curve
grouping can be carried out. They will be fitted using
a conic curve equation [SHP97a] to obtain the curve
parametric equation. The fitted result will fall in one
of the following category: straight-line, parabola,
hyperbola, or ellipse.
However, straight-lines will not be generated due to
the pre-processing of strokes through the linearity
test. Hyperbola and parabola are considered as
special cases by our system on the assumption that
they rarely occurred in sketched geometric objects.
Consequently, we only consider the elliptical curves
that result from the fitting. Circle is treated as special
case of ellipse where the major and minor radii are
identical. After that, all sketched curves are
represented by the parametric equations generated
from the conic fitting procedure.
A general conic curve can be described by the
following equation [BOW83a]:

0222),(22 =+++++= cfygxbyhxyaxyxQ
In our system, we need to find the least square fitting
based on the distance between the captured sketching
points and the equation. The fitting problem is then
reduced to minimizing the following function:

()∑
=

+++++=
n

i
iiiiii fygxbyyhxaxE

1

222 1222

We obtain the coefficients (a, h, b, g, and f) by
solving the partial derivatives of E equals to zero.
The central point, major and minor radii, and the
rotation angle of an ellipse can be obtained from the
equation as in [QIN99a].
A bounding box, the smallest rectangle to enclose a
fitted curve, is used to test for the curves adjacency
for grouping them together. If the bounding boxes
overlap one another, the sketched strokes associated

with the curves will be grouped together. The
grouped strokes will be fitted again. The overlapping
test will be repeated for new fitted curve until there is
no more overlapping bounding boxes in the sketch
(Figure 4).

 (a) (b) (c) (d)

Figure 4: Curve Grouping and Fitting: (a) Initial
sketch; (b) Generate bounding box for each

stroke; (c-d) Grouped strokes with fitted result.

4.3.1 Curve Range
A curve range is calculated from its starting point to
the ending point, with reference to the centre point of
the curve [JEN92a]. The user has the freedom in
sketching a curve in any desired direction. However,
our system standardized all curve range in anti-
clockwise. The ending angle can be a value greater
than 360 degree, as shown in Figure 5.

Figure 5: Curve range calculation.

Over-sketched and incomplete curves often occur in
freehand sketching. Our system will tidy-up the
curves into smooth ellipse or circle as shown in
Figure 6. The curve range for grouped curves is
updated automatically by our system, as shown in
Figure 7.

Figure 6(a): Over-sketched Curve.

Figure 6(b): Incomplete Curve.

0 360 720
x

y

WSCG2006 Full Papers proceedings 267 ISBN 80-86943-03-8

(a) (b) (c) (d) (e) (f)

Figure 7: New curve range is determined from
grouped curves: (a) Initial sketch; (b-c) Curve

with initial range; (d) Additional stroke; (e)
Strokes are grouped as a curve; (f) Curve with

new range.

5. ENDPOINT CLUSTERING
After the grouping process, strokes representing a
particular edge are approximated by a single line or
ellipse parametric equation. The endpoint clustering
process ensures that the corresponding edge
endpoints meet together and that a close loop can be
formed for edge-graph extraction.
5.1 Straight-line Junction Clustering
The straight-line junction clustering is applied for the
line-to-line clustering. Before the clustering can be
applied, the system first finds out endpoints of edges
that are adjacent to each other and within the
tolerance zone as discussed in [SHP97a]. Edges with
endpoints that lie within the zone will be clustered
together to form a junction. In case of a junction with
more than two edges, the system will select two
edges with the most number of strokes to determine
the junction point, the rest of the edges will
automatically snapped to the point (Figure 8).

 (a) (b) (c) (d)

Figure 8: Straight-line junction clustering: (a)
Initial sketch; (b) Clustering result; (c) Modified

sketch; (d) Updated clustering result.

5.2 Lines and Curve Junction Clustering
The curve edge will be adjusted based on the line
edges endpoints position so that the curve edge
endpoints (open curve) or boundaries (closed curve)
will meet the line edges endpoints to form a close
loop (Figure 9).

 (a) (b) (c) (d)
Figure 9: Endpoint clustering for lines and curves
junctions: (a) Initial sketch; (b) Fitted result; (c-d)

Clustered result.

The orientation of the curve is determined to be
parallel to the imaginary line segment L1 that
connects the endpoints of lines that are to form
junctions with the curve. After that, the curve’s
central point is determined to be the middle point of
the line segment L1. The major or minor radius of
the curve is calculated based on the length of L1,
with the other radius being adjusted according to the
distance from sketched curve to central point. For
open curve, new curve range is determined based on
the line endpoints.
For closed curve, lines are adjusted to be tangent to
the curve boundaries, that is, the line is snapped to
the curve at only one intersection point. Figure 10
shows an example of the adjustment made on such
junction.

 (a) (b) (c) (d)

Figure 10: Intersection adjustment on full ellipse
for line and curve junction (a) Initial sketch; (b)

Fitted result; (c) Before adjustment; (d) After
adjustment.

5.3 Parallelism Correction
After the endpoints clustering process, the edges of
the object can be represented by single 2D geometry,
in perfect straight-lines or ellipses that are joined to
each other. To allow some tolerance for freehand
sketching error, straight-lines are tested if they have
similar gradients or orientations. A slight change in
the orientation of lines can be done to ensure
parallelism in the sketch, which is often difficult to
be achieved by freehand sketching.
Each straight-line edge is tested against all the other
edges to obtain their similarity with each other.
Edges drawn with more number of strokes are
determined to be more important and such, are used
as the reference. All adjustment of an edge is
achieved by rotating at the middle point of the edge.
Figure 11 shows an example of the parallelism
correction.

Figure 11: A rectangle before and after

parallelism correction.
If the parallelism correction process changes line
endpoints, the clustering process (as discussed in 5.1)
will be carried out for the associated strokes to
ensure the junction connectivity.

WSCG2006 Full Papers proceedings 268 ISBN 80-86943-03-8

6. IN-CONTEXT INTERPRETATION
OF STROKE
The calligraphic interface system developed here is
meant as a preliminary system taking in 2D sketches,
which are then interpreted so that they can later be
used for 3D models reconstruction. As such, the
system’s interpretation is set to process sketches of
3D geometric objects drawn on 2D. We consider the
isometric projection, although other projections can
be used as well.
For a 2D sketch, a closed loop line or curve is used
to represent a face of a 3D geometric object. A
closed loop is normally interpreted as a surface,
depending on the shape of the object. A complete 3D
object should have no open edge in sketch. Any
stroke with endpoint unconnected to a junction in the
sketch will be considered as an error, and the stroke
will be tagged as ambiguous. The system will
highlight the strokes and prompt the user with a
choice to either delete or keep them. If the user
decides not to delete the strokes, the system will
reinterpret the strokes based on the context so that
they satisfied the geometry constraints.
There are two sources for the ambiguous strokes.
Firstly, the strokes can be caused by the
misclassification of strokes at the beginning of the
interpretation. For example, a short curve drawn with
high sketching speed can be misinterpreted as a line
by the classification method. To correct it, the system
will reclassified it as curve, and continue with the
grouping and fitting with other strokes in the sketch.
Secondly, the stroke might be caused by poor
sketching skill of the user, where overtracing strokes
that meant to be grouped into an edge are sketched
too far apart. The overtracing strokes failed the
grouping tests and were grouped into separate edge.
The both edges have the same endpoints that can be
detected by our system, and grouped into one edge.
Similar restriction applies to cylindrical object,
where straight-lines only intersect curve at the
boundaries of the curve surface (Figure 12).

 (a) (b) (c) (d)

Figure 12: Lines detected as ambiguous with
endpoints at an arc: (a) Input sketch; (b) Detected
ambiguous stroke is in thick red color; (c) Result
when user choose to delete the strokes; (d) Result

when user choose to merge the strokes.

The in-context interpretation also allows the user to
modify sketch with overtracing strokes (Figure 13).
The system will try to connect ‘open’ strokes in the

sketch to its nearest junctions, resulting regrouping
and refitting of the strokes. The fitted result is
therefore moved by the new strokes and modified the
initial sketch.

 (a) (b) (c) (d)

Figure 13: Modification by overtracing; (a-b)
Initial sketch with fitted result; (c-d) Sketch with

‘open’ strokes and new fitted result.

7. IMPLEMENTATION AND
EXAMPLES
The system is implemented using Visual C++ under
the Windows 2000 operating system. The input
device is a traditional digitizing tablet that senses the
drawing on its screen.
Figure 14 shows some examples of the sketch before
and after tidy-up with our system. The interface
allows the user to sketch freely as though using pen
and paper. The system will interpret and tidy-up the
sketch into a single line drawing.

 (a) (b) (c)

Figure 14: (a) Input sketch; (b) Tidied-up sketch;
(c) Single-line output.

Our system keeps the initial sketch information and
associates them with the corresponding edges in tidy-
up drawing. The information can be used to render
additional new strokes in the sketch that are of
similar appearance to the original sketch even though
the new strokes are not actually drawn by the user.
This suggests that the result from our system can be
used as input for non-photorealistic rendering (NPR)
system that renders 3D objects with sketchy
appearance that is similar to the original sketch by
the user. Figure 15 shows the result of such an
implementation.

WSCG2006 Full Papers proceedings 269 ISBN 80-86943-03-8

 (a) (b) (c)

Figure 15: (a) Initial sketch; (b) 3D model in
NPR; (c) 3D model after rotation.

8. CONCLUSION
This paper presents an interactive calligraphic
interface for conceptual design, which supports
multistroke sketching. It is designed to handle
freehand sketches with overtracing and
imperfections. User can sketch over the existing
drawing to enhance, complete or correct an edge.
The system provides in-context interpretation for
sketch that depict 3D geometric object. The
interpretation provides verifications and corrections
for errors made during sketching session, thus
achieving meaningful tidy-up result.
We proposed an alternative interpretation of
overtracing strokes from freehand sketch input from
the existing systems. We consider all strokes as part
of the sketch and grouped them into edges. We
introduce a new method to group multiple curves
using the minimal enclosing bounding box. The
method is fast and hence suitable for online
sketching.
The work presented here is only the first part of our
final sketched-based 3D modeling and rendering
system. The freehand sketch input is processed and
tidied-up for the 3D reconstruction. The
reconstructed 3D model will have a photorealistic
appearance by default. The future work is to
reconstruct and display the 3D model with the
appearance similar to the original sketch in a non-
photorealistic rendering form.

9. REFERENCES
[BOW83a] Bowyer, A., and Woodwark, J., A
Programmer's Geometry, Butterworths, 1983.
[FIO02a] Fiore, F.D., and Reeth, F.V., A Multi-
Level Sketching Tool for Pencil-and-Paper
Animation, AAAI 2002 Spring Symposium., Tech.
Rep. SS-02-08, 2002.
[GRO00a] Gross, M.D., and Do, E.Y., Drawing on
the Back of an Envelope: a framework for interacting
with application programs by freehand drawing,
Computers & Graphics, vol.24, pp.835-849, 2000.

[IGA98a] Igarashi, T., Kawachiya, S., Tanaka, H.,
and Matsuoka, S., Pegasus: a drawing system for
rapid geometric design, ACM Press, pp. 24-25, 1998.
[IGA97a] Igarashi, T., Matsuoka, S., Kawachiya, S.,
and Tanaka, H., Interactive beautification: a
technique for rapid geometric design, ACM Press,
pp.105-114, 1997.
[JEN92a] Jenkins, D.L., and Martin, R.R., Applying
constraints to enforce users' intentions in free-hand
2-D sketches, Intell.Syst.Eng., vol.1, pp.31-49, 1992.
[KAR05a] Kara, L.B., and Stahovich, T.F., An
image-based, trainable symbol recognizer for hand-
drawn sketches, Computers & Graphics, vol.29,
pp.501-507, 2005.
[MIT02a] Mitani, J., Suzuki, H., and Kimura, F., 3D
sketch: sketch-based model reconstruction and
rendering, Kluwer Academic Publishers, pp.85-98,
2002.
[ONE83a] O’Neil, P.V., Advanced engineering
mathematics, Wadsworth Publishing, pp.1091-1093,
1983.
[PAV85a] Pavlidis, T., and Wyk, C.J.V., An
Automatic Beautifier for Drawings and Illustrations,
SIGGRAPH., vol. 19, pp.225-234, 1985.
 [QIN01a] Qin, S.F., Wright, D.K., and Jordanov,
I.N., On-line segmentation of freehand sketches by
knowledge-based nonlinear thresholding operations,
Pattern Recognit, vol.34, pp.1885-1893, 2001.
 [QIN00a] Qin, S.F., Investigation of Sketch
Interpretation Techniques Into 2D and 3D
Conceptual Design Geometry, University of Wales
Institute, Cardiff, PhD Thesis, 2000.
[QIN00b] Qin, S.F., Wright, D.K., and Jordanov,
I.N., From on-line sketching to 2D and 3D geometry:
A system based on fuzzy knowledge, CAD
Computer Aided Design, vol.32, pp.851-866, 2000.
[QIN99a] Qin, S.F., Jordanov, I.N., and Wright,
D.K., Freehand drawing system using a fuzzy logic
concept, CAD Computer Aided Design, vol.31,
pp.359-360, 1999.
 [SEZ01a] Sezgin, T.M., Stahovich, T., and Davis,
R., Sketch based interfaces: early processing for
sketch understanding, PUI '01: Proc. of the 2001
workshop on Percetive user interfaces, pp.1-8, 2001.
[SHE04a] Shesh, A., and Chen, B., SMARTPAPER:
An Interactive and User Friendly Sketching System,
Comput.Graphics Forum, vol.23, pp.301-301, 2004.
 [SHP97a] Shpitalni, M., and Lipson, H.,
Classification of sketch strokes and corner detection
using conic sections and adaptive clustering, J Mech
Des, Trans ASME, vol.119, pp.131-135, 1997.

WSCG2006 Full Papers proceedings 270 ISBN 80-86943-03-8

	C73-full.pdf
	F37-full.pdf
	G31-full.pdf
	C73-full.pdf
	INTRODUCTION
	ATLAS OF DISCOIDS AND Z-BUFFER
	The atlas of discoid
	Z-Buffer and fragment

	ADAPTATIONS FOR REAL-TIME VISUALISATION
	Geometrical considerations
	Level of details
	Illumination model

	RESULTS
	CONCLUSION AND FUTURE WORKS
	REFERENCES

	C71-full.pdf
	B29-full.pdf

