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ABSTRACT 
In this paper, we propose an image retrieval approach based on Quadrant Motif Scan (QMS).  Motif scans from 
segmented blocks inside an image are the primary notion to extract image features.  We exploit recursive 
quadrant segmentation in images and stratify hierarchical regions for matching comparison.  Regions in the 
same stratum hold an identical credit, which is used for similarity metric.  For the sake of matching flexibility, a 
dynamic adjustment scheme of credit setting is offered. In this sense, a user can arbitrarily adjust the credit 
parameters to pursue better retrieval results.  Besides, a peak inspection technique is also added in the QMS 
matching metric to enhance performance.  This means can helpfully refine retrieval performance with trivial 
computational cost.  Experimental results reveal that effectiveness and efficiency of QMS are comparable to the 
Motif Cooccurrence Matrix (MCM) method while QMS is competent to deal with image scaling. 
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1. INTRODUCTION 
Visual information has proliferated for multiple 
purposes in recent years.  With the Internet burst, a 
number of multimedia applications are evolving 
pervasively for intuitive information expression.  
Over the decades, many brilliant researches have 
produced a variety of outstanding techniques in 
image-related fields, and some of those became the 
de facto standards, such as JPEG [Pen93].  However, 
those mature studies largely reside in image encoding 
and storage format.  By contrast, a wide range of 
approaches [Mah03, Pou04, Swa91, Pas96] using 
color, shape, or other factors for Content-based 
image retrieval (CBIR) is still under sprightly 
development.  They retrieve images on particular 
occasions while some existent CBIR systems provide 
users with versatile querying ability [Nil93]. 

There are a plenty of works in the image retrieval 
area.  Some of the renowned approaches are 

recognized as introductory examples for later works.  
For instance, color histogram [Swa91] is one of those 
precedents.  It utilizes the statistics of global color 
distribution to calculate the similarity between two 
images.  Afterwards, other advanced techniques were 
devised to remedy color histogram afterwards.  Color 
Coherence Vectors (CCV) [Pas96] adds the 
information of pixels coherence of one particular 
color and generates coherent regions.  This enhances 
distinction of pixels with same colors but not 
distributed in the same regions.  Moreover, another 
attractive technique, Color Correlogram (CC) 
[Hua97], highlights the spatial correlations of colors.  
It takes on the probability of joint occurrence from 
any two pixels in separate colors or an identical color 
for autocorrelogram [Hua97].  Both of the two 
methods appear to perform much better than 
traditional color histogram.  In a word, they 
presented the significance of spatial information in 
image retrieval.  Not only the mentioned methods but 
more related studies have shown spatial property 
feasible and useful to retrieval refinement.  From this 
point of view, we adopt the spatial factor into our 
work to reduce fidelity loss.  Other schemes like 
Blobworld [Car02] and SIMPLIcity [Wan01], 
region-based techniques for image retrieval flourish 
in an alternate way. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
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Jhanwar et al. [Jha04] use motif notion to capture the 
low level semantics of space filling curves.  Their 
Motif Cooccurrence Matrix (MCM) is the container 
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of motif features literally scanned from image pixels.  
Each 2 × 2 pixel grid is replaced by one from a set of 
six Peano scan motifs [Pea90, See97].  This 
particular version of motifs is shown in Fig. 1.  For 
each cooccurrence, it accumulates times of finding a 
motif i at a distance k from a motif j in the matrix.  
Efficiently, it merely includes individual 6 × 6 motif 
matrices for every color plane irrespective of the 
image size. Apparently, the MCM scheme is 
especially suitable for retrieving images in equal size.  
Variations in image size can inevitably induce 
inconsistent motif amount so it may lead to a 
meaningless matching process.  Meanwhile, because 
the granularity of motif san is so minute, this is 
beneficial for textured images.  Once the query 
scenario is in images from outdoor scene, the 
performance might drop down unexpectedly. 

 

 
Figure 1. Codes for each type of motifs 

 

In this paper, we propose another image retrieval 
approach based on motif symbols, called Quadrant 
Motif Scan (QMS).  Consecutive quadrant 
segmentation on images is the main strategy in our 
scheme.  With a motif extraction for each region, we 
collect all motif data for matching.  By the 
hierarchical structure of motif information inside an 
image, we devise a matching algorithm for similarity 
comparison with ranked results.  Our experiments 
show that QMS has the merits comparable or even 
superior to the MCM method. 

This paper is organized as follows.  In section 2, the 
proposed QMS is explored.  Section 3 describes the 
matching metrics used in QMS.  In section 4, the 
experimental results are presented with a related 
discussion.  The final section gives the conclusion 
and prompts the relevant errands for future work. 

2. QUADRANT MOTIF SCAN 
Motif is an important feature to express the 
chromatic trend lying in a bounded region.  In the 
QMS scheme, we use an entire image as the initial 
region, as shown in Fig. 2a.  An image is first 
subdivided into four non-overlapping parts in Fig. 2b.  
The four segmented quads form the source 
generating a motif for the first region which also 
belongs to the 1st stratum.  In Fig. 3, QMS then 
calculates separate mean values of all pixels for each 
quad and uses them to derive a motif.  Here, the RGB 

colorspace is applied and the 3 colors are synthesized 
by averaging them, ranging from 0 to 255. 

 

 
Figure 2. The recursive segmentation processes in 
Quadrant Motif Scan. (a) The original image. (b) 

4 quads for the region in the 1st stratum. (c) 4 
quads for successive sub-region. 

 
Figure 3. Formation of a motif from a region.  

From left to right are (a) image pixel values, (b) 
means of four quads, and (c) a resulting motif. 

 

Likewise, successive subdivision operations (see Fig. 
2c) from the current region continue until a pre-
defined stratum threshold is reached.  Continually, 
the same manipulation to evaluate mean values is 
carried out for every child region, and separate 
motifs are eventually derived as shown in Fig. 4.  In 
particular, the four motif blocks belong to the same 
stratum (2nd) so they share a common credit for the 
matching metrics.  In short, a parent’s quad, used as 
an element for its motif derivation, is regarded as a 
child’s intrinsic region. 

 

 
Figure 4. Successive subdivisions into four child 

regions.  

 

To avoid ambiguity of motif scan, we introduce the 
suggestion used in the MCM study [Jha04].  Our 
QMS follows the breadth-first strategy to regulate the 
motif recognition.  For instance, Z-type motif is 
recognized rather than N-type in Fig. 5.  Note that 
any kind of motif traverse starts from the upper-left 
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quad regardless of its actual value.  Besides, 
supplementary uniformity detection is taken into 
account simultaneously.  During a motif extraction, 
the highest and lowest mean values from four quads 
are recorded.  A simple subtraction operation is 
performed to retain the information whether the 
region is uniform or not.  Finally, both of the motif 
and uniformity information for a region is collected 
and assembled together into a single data structure.  
The uniformity threshold in our scheme is set to 35 
in default; the difference less than the threshold will 
lead a region to be uniform. 

 

 
Figure 5. Example of motif traverse. 

 

This architecture of stratified motif scan is to find out 
local motif information throughout an image.  Due to 
different significance of separate strata, varied credits, 
or so-called weights, are granted to reflect their 
power.  In the QMS scheme, we designed an 
algorithm using these credits to match images.  On 
the other hand, what the exact stratum threshold is 
supposed to be becomes another issue.  If a higher 
stratum threshold is designated, more blocks of motif 
are then received and can depict an image more 
precisely.  From this viewpoint, the retrieval 
performance can explicitly rise via adding more 
strata at the expense of computational costs.  In 
practice, an adjustable stratum threshold may be 
needed according to the user’s demand.  As a general 
rule, performance choice is recommended to come to 
a compromise between speed and effectiveness.  
Table 1 shows a cross mapping among strata, regions, 
and motif blocks. 

 

Stratum No. 1 2 3 4 5 6 7 

Regions 1 4 16 64 256 1024 4096

Accumulated motif 
blocks (A) 1 5 21 85 341 1365 5461

Table 1. Variations in corresponding numbers of 
strata, regions, and motif blocks 

 

3. MATCHING METRICS 
Before matching two images, there are some 
prerequisite preparations to launch image comparison. 

System Settings 
Stratum Threshold - A pre-defined stratum 
threshold is set for the motif scan process.  All 
images are manipulated by this rule so that they have 
the consistent number of motif blocks stored in the 
database for the matching functionality. 
Uniformity Criterion - The method requires a 
criterion for uniformity detection.  This is used as a 
value range to recognize whether a region/motif 
block is uniform or not.  The same as stratum 
threshold, this must be decided at the very beginning. 
Credit Setting - Varied credits (weights) are 
specified for each stratum.  These variables are in 
relation to retrieval results. 
The first two items are the most important parameters 
for QMS implementation.  Both of them can also be 
critical to retrieval performance.  In turn, the third 
setting is about scoring schemes and is independent 
of the two previous settings.  This can be 
dynamically adjusted at run-time to evaluate and 
rectify the retrieval results. 

Distance 
Assumed that the required parameters are verified 
and the QMS database is then constructed, the 
matching process can launch on the final comparison 
stage.  Motif blocks of two images, the query and 
target, are matched on the blockwise basis.  If a pair 
of corresponding blocks/regions is exactly the same, 
which have equal motif type and uniformity property, 
the target scores the specified credit.  Otherwise, the 
target fails in this block and goes on next until all 
motif blocks are through.  When the process is 
finished, a total score will be attached to that target.  
The higher the score is, the more similar the query 
and target images are.  In effect, it will receive a 
perfect score when the query and target are exactly 
the identical image.  After all images in the database 
are thoroughly matched with the query, a score list is 
made in a descending manner. 

Given a mapping function, it can find out the jth 
stratum to which the ith block belongs and hence the 
corresponding credit Cj.  Each pair of motif blocks, 

q
iM  and t

iM , for the query and target respectively, 
is compared to get a similarity status Si.  If two 
blocks are equal, it leads to Si = 1, or 0 otherwise.  
The overall matching expression is as follows: 
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where Iq and It are the query and target images and K 
means the maximum of motif blocks assigned by the 
number of strata N specified for motif scan process.  
Array A gives the information the ith block is 
subsidiary to the jth stratum.  This distance metrics 
will result in a score sum for ranking. 

Besides the parameters in motif construction, we add 
a peak inspection function for retrieval supplement.  
This function uses a peak number to set how many 
global peaks of pixel values in an image are selected.  
These peaks are traversed from the highest with 
proximal peaks omission.  To enhance the proposed 
QMS method, the inspection will result in a 
percentage of matched peaks between images and 
use it to weight original matching score.  The 
computational cost is trivial to this additional 
enhancement in exchange for advancement of 
precision. 

 

Scheme Strata Motif Blocks Uniformity Peaks

A 5 341 

B 6 1365 
35 10 

(a) 
Stratum 

No. 1 2 3 4 5 6 

Credit 4 4 4 4 4 4 
(b) 

Table 2. (a) QMS system parameters and (b) 
Credit settings for scoring 

4. EXPERIMENT RESULTS 
Query-By-Example is a common technique used in 
many image retrieval systems.  For instance, IBM 
QBIC [Fli95] is one of the best-known systems.  The 
QMS system also applies such a skill in the system 
design.  On the side, we chose the MCM method to 
serve as the opposite to show the comparison of 
motif-based approaches. 

Experimental Setup 
For a variety of queries, we collected a huge amount 

 of images to test the retrieval performances in 
different query scenarios.  These resources includes: 
nearly 10,000 images used in the WBIIS system 
[Wan98], 25 images from the Aridi art collection, 
and the MIT Media Lab’s Vistex collection.  
Textured and non-textured images are existent in our 
experiments for specific comparison purposes.  
Scaling manipulation for some samples is also done 
to emphasize that QMS is invariant to image scaling.  
About the stratum threshold, it is adequately set to 5 
in default with 341 motif blocks as a good start point.  
This setting is, however, still subject to variations of 
image size.  Table 2 shows the related parameters 
used in our experiments. 

With different setups, two typical schemes (see Table 
2a) are presented for performance analysis.  Scheme 
B is used to seek if there is a better solution after 
scheme A is tried out.  In most cases, one more 
stratum (adding more motif blocks) could bring out 
substantial retrieval effectiveness.  However, some 
other factors more or less give rise to direct or 
indirect influences on our multi-stratum comparison. 
Again, the credit settings in Table 2b are for 
examples and could be dynamically adjusted in our 
experiments.  Since there may be many diverse 
images in the database, a universal credit setting for 
all sorts of queries is really hard to define.  We 
therefore design this flexible facility to meet needs in 
possible demands.  This feature is also very helpful 
when we want to clarify an empirical credit setting 
toward a specific content in a query image. 

Results 
4.2.1 Database from MIT Vistex 
We have performed voluminous queries in order to 
identify which type of images is more favorable for 
the QMS scheme.  The 128 × 128 set of images in 
the MIT Vistex database was the first case in our 
comparison with the MCM method.  Information for 
the classification and corresponding quantities in the 
database is shown in Table 3. 

Fig. 6a shows the query image, and the retrieval 
results in Fig. 6b expose the effectiveness of the 
MCM method, retrieving 10 out of 11 in the series of 
buildings.  Although the results may cause different 

Class Bark Brick Buildings Fabric Flower Food Grass Leaves Metal 

Pieces 13 9 11 20 8 12 3 17 6 

          

Class Misc. Paintings Sand Stone Terrain Tile Water Wood Total 

Pieces 4 13 7 6 11 11 8 3 162 

Table 3. Image classification in the 128 × 128 set from the MIT Vistex database 
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evaluations from individual perceptions, some 
characteristics are apparent to realize.  For example, 
the intricate grids, which form the appearance of the 
buildings, are the most salient features in this query 
image.  On these grids, two colors black and 
yellowish gray are alternate regularly throughout the 
surface of the buildings.  The extent of buildings also 
occupies most of the image.  Hence, we can 
intuitively infer that a great deal of some repeated 
motifs will be extracted and stored in the MCMs.  
Because of the subtle granularity to form a motif, any 
massive prominent patterns are crucial to retrieval.  
Despite the fact that there are a few deficiencies in 
this retrieval sample, the performance is brilliant.  
However, queries in other categories in Table 3 do 
not necessarily give the same performance as well. 

 

 
Figure 6. (a) The query image and  (b) retrieval 
results using the MCM method.  The retrieved 
images are ordered from left to right and top to 
bottom by their similarity to the query image. 

 

Referring to the performance measure in Guoping 
Qiu’s study [Qiu03], we made a slight modification 
of it and only the first 24 retrieved images in the first 
page in our system are shown for discussion.  Other 
images are still ranked and remained below the 
retrieval manifest. 

The same query sample is conducted in QMS as 
shown in Fig. 7.  We use two schemes, A for 5 strata 
with the credit setting 4-4-4-4-4 and B for 6 strata 
with 4-4-4-4-4-1, to demonstrate performance.  In 
scheme A, the results in the first row seem better 
than MCM, but, in terms of quantity, A merely 
retrieves 5 images of the same category (buildings).  
In turn, B improves both retrieval quality and 
quantity from A.  Obviously, scheme B outperform 
MCM in retrieval quality, i.e. the ranking order, with 
a little inferior quantity of 8.  At least, from 
synthesizing both criteria, our QMS remains quite 
comparable. 

Furthermore, we made an interesting experiment to 
evaluate retrieval ability when the database only 
consists of images in the buildings category.  As we 
can see in Fig. 8, the similarity order is much more 

reasonable in QMS than that of MCM.  Thus, this 
phenomenon can explain that MCM performs 
considerably well while desired images in database 
are perceptibly distinct from others.  Otherwise, 
ordinary queries may not give such a satisfactory 
performance as the previous example.  Moreover, 
another query scenario is reported in [Lin05] when 
there is only one image in database perceptually 
similar to the query. 

 

 
Figure 7. Retrieved images by QMS with different 

schemes.  The stratum threshold is set to 5 in A 
and increased to 6 in B. 

 
Figure 8. Results from querying only in the 

buildings category by (a) MCM and (b) QMS. 

 

 
Figure 9. Retrieval results from images of unequal 

sizes by (a) MCM and (b) QMS.  All images are 
displayed in thumbnail. 
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4.2.2 Querying in images of unequal sizes 
Next, the experimentation will proceed to databases 
containing images of unequal sizes.  To account for 
the retrieval capability invariant to image scaling, a 
set of 25 color images was collected from the Aridi 
art collection.  These images differ in size ranging 
from 239 × 363 to 724 × 192 in disproportional 
ratios.  A sole entity located in the center, such as a 
crest or ribbon, is the common property of the 
images.  From the query example in Fig. 9a, the 
performance of MCM obviously drops down due to 
unfixed image sizes; it can not match images on an 
inconsistent criterion.  In effect, the match results 
almost lie in a disordered state.  By contrast, along 
with the setting of scheme A in Table 2 (without 
peak inspection), QMS make the ranking orders in 
Fig. 9b much more acceptable than MCM.  Ideally, 
images with a cross should be retrieved first before 
those with a circle.  In this context, QMS almost 
fulfills this requirement. Therefore, our approach 
shows the capability of querying in which target 
images vary in size.  In another trial, however, QMS 
is still sensitive to image rotation, whereas the MCM 
might be less sensitive. 

4.2.3 Performance evaluation 
As mentioned in the study of Müller et al. [Mul01], 
evaluation measures to retrieval performance are 
proposed from various viewpoints.  Similarity 
judgments are not easily be done objectively.  Thus, 
we resort to the notion of recall in this paper and 
modify the formula as follows: 

recall (M1) = 
||Firstm(M1) ∩ U||

m  ,                (2) 

where Firstk(M) is the set of the first k retrieved 
images by the method M. U=Firstk(M1) ∪ Firstk(M2), 
m = ||U||, i.e., m is the number of members in the set 
U while methods M1 and M2 are MCM and QMS in 
our experiment respectively.  If there are many 
methods, M1, M2, ..., Mn, to be evaluated, then only 
the definition of U in this formula must be changed, 
i.e., U = Firstk(M1) ∪ Firstk(M2) ∪ ... ∪ Firstk(Mn). 

The first evaluation is for queries conducted from the 
database in Table 3.  In this process, we randomly 
picked out 50 images (total 162) as the query and 
made k equal to 20 to gain the first 20 results 
separately from MCM and QMS.  Then, an 
intersection (m) is made as the denominator.  Besides, 
we repeated this process for at least 3 times to avoid 
biased evaluations.  Table 4 shows the average times 
of better recall values.  The schemes in use conform 
to the credit setting in Table 2b. 

In Table 4, 5S means using 5 strata in the QMS while 
5SP is with auxiliary peak inspection.  TIE counts 

the times where the recall values of both methods are 
equal.  From this table, increment of stratum can help 
raise the recall evaluation for QMS, and so does the 
incorporation of peak inspection.  In Addition, we 
also apply this performance measure to the database 
from WBIIS (see Table 5).  In this context, images 
are largely heterogeneous so that the accumulated 
times of TIE are greater than any of the other two.  
This situation implies that most retrieval results by 
MCM and QMS are not overlapped.  Hence, our 
QMS is not arguably better than the other though the 
data is advantageous to QMS.  From the statistical 
data in Table 4 and 5, however, QMS is proven 
superior to MCM based on this recall criterion. 

 

 Average Times 
Schemes in 

QMS MCM TIE QMS 

5S 20 13 16 
5SP 15 14 21 
6S 21 7 22 

6SP 15 12 23 
Table 4. Average times of better recall values 

 
 Average Times 

Queries MCM TIE QMS 
300 63 140 97 

3000 283 2369 348 
Table 5. Average times of better recall values 

from the database used in WBIIS 

 
Through a plenty of experiments, QMS is very 
efficient to computation and economical to storage 
requirement.  In those experiments, we use a 
tentative platform based on PC, a Pentium III 
733MHz CPU with 512MB RAM.  The time costs of 
motif feature construction in Table 4 are 
approximately 7 sec for MCM and QMS while both 
use less than 1 sec in matching images.  For the 
second case in Table 5, both methods spend approx. 
5 min on offline motif extraction for nearly 10,000 
images while QMS merely uses less than 3 sec for 
matching, which is better than 11 sec of MCM.  
Apparently, QMS can much better fulfill the speed 
requirement (in linear time) of online query.  Note 
that all time data above settles on a temporary file 
database system. 

5. CONCLUSIONS 
In this paper, we have introduced another retrieval 
approach, Quadrant Motif Scan, based on motif 
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symbols.  Images are segmented recursively into sub-
regions, which are the sources of motif derivation. 
Motif scan is limited to a stratum threshold and 
combined with uniformity detection.  With any 
arbitrary or empirical credit setting, the matching 
metrics is conducted in a simple, fast manner.  
Incorporating the additive of peak inspection, QMS 
may run at a more stable and reliable performance.   
Compared with the MCM method, QMS remains 
competitive and even better, especially when image 
sources are not highly textured.  With the additive of 
peak inspection, the QMS can run at a more stable 
and reliable performance.  Most important, the 
mechanism of relevance feedback is provided in the 
QMS system.  Users can dynamically adjust the 
credit setting to achieve optimal results.  
Nevertheless, the problem of image rotation remains 
awkward to overcome in QMS. 

Motif is a descriptor capturing features for images.  
Although it is not comprehensive for all features 
about images, it is applicable to employ with other 
algorithms or advanced techniques.  So far, 
efficiency and effectiveness are demonstrated in the 
current method to a certain extent.  In the future, we 
might seek to develop better algorithms to 
complement this motif-based method.  Empirical 
rules of credit setting for diverse query scenarios are 
required analyzing in detail.  In future work, we will 
count on other considerations like colorspaces, e.g. 
HSV, for further reinforcement. 
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