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ABSTRACT 

In this paper, we propose and evaluate a systematic approach for improving performance of 3D model retrieval 
by combining multiple shape descriptors. We explored two approaches for generating multiple, mutually 
independent, shape descriptors; (1) application of a (single-resolution) shape descriptor on a set of 
multiresolution shape models generated from a query 3D shape model, and (2) application of multiple, 
heterogeneous shape descriptors on the query 3D shape model. The shape descriptors are integrated via the 
linear combination of the distance values they produce, using either fixed or adaptive weights. Our experiment 
showed that both multiresolution and heterogeneous sets of shape descriptors are effective in improving retrieval 
performance. For example, by using the multiresolution approach, the R-precision of the SPRH shape descriptor 
by Wahl, et al, improved by 8%, from 29% to 37%. A combination of three heterogeneous shape descriptors 
achieved the R-precision of about 42%; this figure is about 5% better than the R-precision of 38% achieved by 
the Light Field Descriptor by Chen, et al., which is arguably the best single shape descriptor reported to date. 
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1. INTRODUCTION 
3D shape models are increasingly popular in many 
application domains, ranging from movie special 
effects, 3D games on cellular phones or on game 
consoles, to 3D mechanical CAD/CAE systems. The 
popularity has prompted research into effective 
management and reuse of 3D shape models by means 
of shape-based retrieval of 3D models. An example 
of such database is the 3D Search engine at the 
Princeton University [Funkhouser03].  

Typical steps for shape similarity based retrieval of 
3D models starts with query specification (See 
Figure 1.) As queries, texts, 2D sketches, 2D images, 
3D sketches, and 3D shapes have been used in the 
past. Multiple query specification methods may be 

combined, as in the work of Funkhouser et al 
[Funkhouser03]. The next step is to extract feature, 
or shape descriptor (SD), from the query. Also, as a 
pre-computing step, SDs for 3D shape models in the 
database have been computed. The querying method 
and the 3D shape representation used for the 
database influences the shape descriptor and the 
similarity (or more often, distance) computation 
method. During the distance computation, it is often 
desirable to reflect human judgment. The database 
retrieves and presents the models most similar to the 
query based on the distances computed.  

 

Figure 1. A typical 3D model database system. 
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In this paper, we explore an approach to boost shape 
similarity retrieval performance of a 3D model 
database by extracting more features from shape 
models. Our method uses two method to try to 
extract more shape feature from a query 3D model; 
(1) extraction of a multiresolution set of features by 
applying a SD to the models having multiple 
resolution levels generated by using the method by 
Ohbuchi, et al [Ohbuchi03], and (2) extraction of a 
heterogeneous set of features by applying multiple, 
heterogeneous SDs to the model.  

Multiple SDs are integrated via distance value they 
produce by using linear combination, which allows 
integration of features that does not explicitly 
produce feature vectors, namely, the Light Field 
Descriptor (LFD) [Chen03] by Chen, et al. 
Integration of a set of distances are done through 
either fixed weight linear combination of distances, 
or knowledge based adaptive weight linear 
combination of distances. The latter is a modification 
of the “purity” based method of Bustos, et al. 
[Bustos04a, Bustos04b]. 

Our experiments showed that the multiresolution 
approach boosted performances of many, but not all, 
of the SDs we tested. Combinations of 
multiresolution, heterogeneous shape descriptors 
produced the best performance of the combinations 
we tested. For example, one of the combinations 
produced R-precision of 42%, which is about 5% 
higher than the 38% achieved by the LFD by Chen, 
et al., which is one of the best performing SDs 
according to Tangelder, et al. [Tangelder04].  

This paper is organized as follows. In the following 
section, we review the previous integrate features for 
3D model retrieval. In Section 3, we describe the 
method to compute multiresolution SDs, and the 
method to integrate multiple SDs by their distance 
values.  A set of performance evaluation experiments 
and their results are described in Section 4. We 
conclude the paper in Section 5. 

2. Previous Work 
In the field of content based search and retrieval 

of 2D images, it is typical to extract more than one 
feature from an image, and combine these features 
for an overall similarity comparison. Thus it is 
natural to think of such an approach for the 3D 
model retrieval. This approach has been taken by 
several groups; Iyer, et al. [Iyer03], Bustos et al 
[Bustos04a, Bustos04b], and Atmosukarto, et al. 
[Atmosukarto05]. 

Iyer et al. weighted and combined multiple 
heterogeneous feature vectors, letting the user 
control the weights explicitly through a user interface 
or implicitly through a relevance feedback 

mechanism that employs interactive learning. The 
method by Atmosukarto et al. also weighted and 
combined heterogeneous feature vectors. Their 
experiments showed that combinations of descriptors 
have better performance than any single shape 
descriptor they evaluated. 

Unlike the former two, the method by Bustos et al. 
integrated multiple, heterogeneous features via 
distance. Bustos computed the overall distance 
between a pair of models as a linear combination of 
the distances using either fixed or adaptive weights. 
In the fixed weight combination, weights are the 
same regardless of the model (or the model 
category.) In the adaptive weights combination, 
weights are computed by using purity, which is an 
estimate of the performance of the SD determined by 
using a pre-classified training database. Bustos et al. 
reported significant performance gain using both 
fixed weight and adaptive weight linear combination 
of distances, although the adaptive one performed 
better. 

Integration of multiple shape descriptors can be 
achieved using either (1) feature vectors of the 
descriptors, if available (the approach by Iyer et al. 
and Atmosukarto, et al.), or (2) distance values 
computed using the descriptors (the approach by 
Bustos et al.). Integration using feature vectors 
potentially allows fine tuning of distance 
computation, e.g., by weighting each element of the 
vectors. However, this approach can’t be used if a 
shape descriptor produces distance but not feature 
vector. For example, one of the most powerful 3D 
shape descriptors, the LFD by Chen et al. [Chen03] 
produces distance only, and is useful only for 
distance based integration. Findings by Atmosukarto 
et al. and by Bustos et al. are contradictory regarding 
whether the shape descriptor should be combined as 
feature vectors or as distances. Atmosukarto reported 
that a combination of distances does not produce any 
performance improvement. Bustos et al., on the other 
hand, reported that combinations of distances are 
beneficial. Our finding reported in this paper agrees 
with that of Bustos et al.  

3. METHOD 
In this section, we describe the method to compute 
multiresolution shape descriptors and the method to 
combine multiple shape descriptors by their distance 
values. 

3.1. Computing multiple shape 
descriptors 
To improve retrieval performance through feature 
integration, features should capture as different shape 
feature of the model as possible. Our method uses the 
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following two different approaches to extract 
mutually independent shape descriptors.  

1. Multiresolution approach: Generate a set of 
multiresolution (MR) shape models from a 
model to be compared. A (single-resolution) 
shape descriptor is applied to the MR shape 
models to produce multiple SDs.  

2. Heterogeneous shape descriptor approach: 
Apply multiple shape descriptors to the model to 
be compared.  

A combination of the two approaches above is also 
possible. For example, an MR representation having 
m  levels may be combined with n  heterogeneous 
shape descriptors to produce m n×  shape descriptors.   

3.1.1 Multiresolution shape descriptors 
The method by Ohbuchi, et al. [Ohbuchi03] 
compares 3D models at multiple scales following the 
steps below: 

1. Compute a multiresolution representation: 
The surface-based input model is converted into 
a point-based model by Monte-Carlo sampling 
of the surfaces of the model. A set of L-1 scale 
values αι, i=1…L-1 is computed based on the 
size of the model. The set of scale values are 
used to normalize size among shape models. 
Then, compute L-1 3D alpha shapes from the 
point set model by using the L-1 scale values αι. 
Of L shape features, those of the coarser (L-1) 
levels are computed by using the 3D alpha 
shapes [Edelsbrunner94]. For the finest 
resolution level L, however, the original, 
polygon soup model is used. Ohbuchi et al calls 
this set of multiresolution models Alpha-
Multiresolution Representation (AMR).  

2. Compute multiresolution shape descriptors: 
Apply a shape descriptor x to a model at each 
resolution level of the AMR, creating a set of 
multiresolution shape descriptors AMR-x. 

3. Compute distance between a pair of features: 
Compute a distance between AMR-x shape 
descriptors of a pair of models to be compared, 
using a statically weighted linear combination of 
L distances.   

An advantage of the AMR above is that it can be 
computed for polygon soup models or even for point 
set models (without the step 1 above.) Figure 3 
shows an example of AMR representation for a 
surface-based 3D model of rabbit. The AMR is 
reminiscent of morphological multiresolution 
representations for 2D images. 

 
Figure 2.  Computing the AMR-x multiresolution 
shape feature.  

     
A surface based model and its point set 
representation using 2,048points. 
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Figure 3. An example of AMR representation for the 
surface-based model of a rabbit. 

3.1.2. Heterogeneous shape descriptors 
As the heterogeneous shape descriptors, we used the 
D2 by Osada, et al.[Osada02], the AAD by Ohbuchi 
et al. [Ohbuchi05], the SPRH by Wahl, et al. 
[Wahl03], and the LFD by Chen, et al. [Chen03]. 
The D2 is a 1-dimensional (1D) histogram of 
distances between every pair of points generated on 
surfaces of a model. The AAD and the SPRH are 
both extensions to the D2 above. In addition to the 
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distance used in the D2, the AAD and the SPRH 
extract such features as the mutual orientation of the 
pair of points, resulting in a 2D histogram for the 
AAD and a 4D histogram for the SPRH. The LFD by 
Chen, et al. is different from all of the above. It 
compares similarities of a set of images generated 
from multiple viewpoints about the 3D model. 
According to the survey paper by Tangelder et al. 
[Tangelder04], the LFD is by far the most powerful 
shape descriptor.  

3.2 Integrating multiple shape descriptors 
In combining distances produced by shape 
descriptors, our method normalizes the distances first, 
and then computes a weighted linear combination of 
the distances.  

3.2.1 Normalization 
Prior to integrating distances, the distances are 
normalized by their standard deviations. Let U  be 
the set of 3D models in the database, and o U∈  be 
the model from the database, and iSD , 1 i N≤ ≤  be 
the shape descriptors. For the shape descriptor iSD , 
rhe average ( )idµ and the standard deviation ( )idσ  
are computed for the databaseU . Let ( ),id q o  be the 
distance prior to normalization computed using the 

iSD  for the model pair q  and o . Then the 
normalized distance ( )ˆ ,id q o  for the iSD  is computed 
as below.  

 ( ) ( ) ( )
( )

,1ˆ , 1
2 3

i i
i

i

d q o d
d q o

d
µ

σ
⎛ ⎞−

= +⎜ ⎟⎜ ⎟⋅⎝ ⎠
 (1) 

Figure 4 shows examples of histograms of distances 
for the four SDs we have used. The distance axis is 
normalized to its maximum distance value (=100%). 
It can be seen that the normalization using standard 
deviation would perform better than the 
normalization using maximum distance.  
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Figure 4. Distribution of distances for the SDs.  

Integrating shape descriptors using normalized 
distance using the formula (1) above should perform 
better than our previous method described in 
[Ohbuchi03], which employed no distance 
normalization at all in integrating SDs generated by 
using the AMR. Also, we expect our normalization 
method using standard deviation of distances to be 
more robust against outliers than the normalization 
method using maximum distance employed by 
Bustos, et al. [Bustos04a]. 

3.2.2. Weighted Linear Combination 
Our method computes the overall distance 

( , )d q o  as the linear combination of N  normalized 
distances ( )ˆ ,id q o  using the following formula.  

 ( ) ( )
1

ˆ, ,
N

i i
i

d q o w d q o
=

= ∑  (2)  

We compared two different methods to determine the 
weights iw .  
1. Fixed weighting: weights .fix

iw  are 
predetermined and fixed across the query.  

2. Adaptive weighting: weights .adap
iw  are 

adaptively varied according to the query and its 
(estimated) category.  

Using fixed weights has two drawbacks. One is that 
the fixed weights won’t produce the best 
performance across all the classes. Assuming a pre-
categorized database, the performance of a SD varies 
depending on the class the query model (is supposed 
to) belongs to. That is, for example, one SD is good 
at querying human figures while another SD is good 
at querying airplanes. The other is that 
experimentally finding a best set of weights for a 
given set of SDs and a database can be 
computationally expensive for a nontrivial number of 
SDs and models. An adaptive weighting method that 
adapts to the query model and/or to the class in 
which the query model is likely to belong is quite 
important.  
For the adaptive weighting, we adopted Bustos’s 
“purity” based weighting scheme [Bustos04a, 
Bustos04b] with a few minor modifications. The 
purity is an estimate of “goodness” of a SD in 
characterizing a category in a given database. The 
idea behind the purity is the maximum information 
gain criteria for selecting an attribute in splitting a set 
in the decision tree learning algorithm. The purity 
assumes that the database of the 3D models is pre-
classified into M  classes. Let k

iS be the number of 
models retrieved from a class kC , 1 k M≤ ≤ , using 
the shape descriptor iSD . The purity 

( , , )ipurity SD q t  is computed as below for a shape 
descriptor iSD , query q , and a positive integer 
constant  t . 
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 ( ) ( )
1

, , max k
i ik M

purity SD q t S
≤ ≤

=  (3)  

In other words, the purity for the iSD  is higher if the 
SD returned more model from the category kC  in the 
top t  retrievals, regardless of the class.  
Using the ( , , )ipurity SD q t , the adaptive weight 

.adap
iw  between the query q  and the 3D model 

o U∈  is computed as follows. 

 . ( , , )adap n
i iw purity SD q t=  (4)  

Bustos, et al. used a slightly different .adap
iw . Our 

version could have a larger difference in weights, 
depending on the selection of the “purity power” 
parameter n . 

 . ( , , ) 1adap
i iw purity SD q t= −  (5)  

In the following, we call our weighting method 
purity* and Bustos’s original adaptive weighting 
method purity.  

4. EXPERIMENTS AND RESULTS 
We implemented our own versions of the D2 
[Osada02] and the SPRH [Wahl03] shape descriptors. 
We used our original implementation of the AAD 
[Ohbuchi05] shape descriptor. For the LFD [Chan03], 
we used the executable provided by the original 
authors of the LFD paper [Chan03] found at their 
web site. In our previous work [Ohbuchi03], we 
combined the AMR only with the AAD shape 
descriptor. In this work, we combine the AMR 
approach with all the four shape descriptors listed 
above.  

For the performance evaluation experiments, we used 
the Princeton Shape Benchmark (PSB) 
[Funkhouser03] database. It contains the total of 
1914 models, divided into the 907 model training set 
and the 907 model test set. Each set is classified into 
90+ “base” classes. We used the most detailed “base” 
classifications for the experiment.  

As quantitative measures of performance, we used 
the R-precision (1R), the 2R-precision (2R), the 11 
point average precision (11P) figures, and the 
precision-recall plot [Baeza-Yates99]. The R-
precision is the ratio, in percentile, of the models 
retrieved from the desired class kC  (i.e., the same 
class as the query) in the top R retrievals, in which R 
is the size of the class kC . The 2R-precision is 
similar to the R-precision, except that the figure is 
computed using the top 2R retrievals. In computing 
the R- and 2R-precision values, the query q  is not 
counted as the retrieved model. That is, the q  is 
drawn from the database U , the 1R and 2R values 
are computed by using 1kC − . The 11-point average 
11P is the average of precision values taken at 11 

equally spaced recall values {0.0, 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. A 11P average precision 
value can be considered as a summary of the recall-
precision plot, which emphasizes overall 
performance. The 1R and the 2R values favor 
methods having higher precision for the “near the 
top” retrievals. 

4.1.  Multiresolution shape descriptors 
In this experiment, we evaluated the effectiveness of 
integrating multiresolution shape descriptors. We 
first compared the retrieval performances of the 
shape descriptors at different resolution levels. 
Interestingly enough, as shown in Table 1, the most 
detailed models (the original models) may not 
achieve the highest retrieval scores. In the cases of 
the D2 (not shown), the AAD, and the SPRH, 
retrieval using coarser scales (the level 5, and to a 
lesser degree, the level 4), produced better 1R score 
than using level 6 (i.e., most detailed) models. For 
the LFD, however, retrieval using the most detailed 
models produced the highest 1R score. A possible 
explanation for this is that the LFD favors shape 
details of the models and that the corners and edges 
of the convex hull models interfere with the 
performance of the shape descriptor. Note also that 
retrieval using the coarsest level (i.e., convex hull) 
models performed surprisingly well.  

As shown in Table2 and in Figure 5, for some of the 
SDs, combinations of multiresolution (MR) shape 
descriptors using either the fixed or the adaptive 
weights significantly outperformed their single-
resolution (SR) counterparts. In the case of the AAD, 
1R figure improved by 10% from 24.4% for the SR 
version to 34.9% for the MR version using the 
purity* weighting. The performance of the SPRH 
increased from 28.6% (SR) to 36.6% (MR), 
approaching the 38.0% of the LFD. The performance 
of the LFD, however, did not improve due to the MR 
combination. Also, adaptive weighting using the 
purity* showed small but consistent advantage over 
their fixed weighting counterparts for all of the four 
SDs tested. 

Table 1. R-Precision varies across resolution levels. 
As the numbers show, the most detailed model may 
not be the best choice for retrieval.  

R-precision [%] Resolution
levels D2 AAD SPRH LFD 

1 18.53 21.50  24.50  28.32 
2 18.12 21.97  25.67  28.71 
3 19.96 24.02  28.99  30.62 
4 20.27 25.54  30.42  32.59 
5 20.92 26.78  31.15  34.83 

Orig=6 18.72 24.41  28.57  37.96 
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Table 2. The multiresolution (MR) versions of D2, 
AAD, and SPRH outperform their single resolution 
(SR) counterparts. Such is not the case for the LFD.  

SDs Weights 1R 2R 11P 
D2  18.72  27.23 0.314

Fixed, 111111 25.14 38.84 0.375 
Fixed, 123456 24.62  33.34 0.369 MRD2 
Adaptive, purity* 25.45  33.54 0.379 

AAD  24.41 34.40 0.364
Fixed, 111111 35.11 44.81 0.446
Fixed, 123456 33.19  43.06 0.456 MRAAD 
Adaptive, purity* 34.89 45.38 0.471

SPRH  28.57 38.66 0.404
Fixed, 111111 35.11 44.81 0.468
Fixed, 123456 35.27  45.69 0.470 MRSPRH 
Adaptive, purity* 36.60 45.08 0.482

LFD  37.96 48.74 0.496
Fixed, 111111 35.90 44.22 0.474
Fixed, 123456 37.10 45.43 0.484MRLFD 
Adaptive, purity* 37.39 45.61 0.489

4.2 Weighting methods 
We compared the performance of the purity* based 
weighting for different values of the parameter purity 
power n  in the equation (2). We also compared the 
performance of our purity* and the original purity by 
Bustos, et al. [Bustos04a].  

Table 3 shows the performance of the MRLFD-
MRAAD-MRSPRH combination using different 
values of purity power n . In terms of 1R scores,  

3.0n =  produced the best 1R performance, and 
9n =   produced the best 11P performance. Table 4 

compares the Bustos’s purity with our purity* for 
their retrieval performance. In all the combinations 
tested, our purity* using the selected parameter n  
performed better than the original purity of Bustos et 
al. Our purity* performed better probably because 
the weight can have a larger dynamic range. As a 
disadvantage, our scheme requires a search for the 
bester value n , although the search should be 
relatively easy for it is a 1D search space. 

Table 3. Effects of purity power n on the retrieval 
performance for the MRLFD-MRAAD-MRSPRH 
combination. 

 N 1R 2R 11A 
Bustos’s 
purity 

 
42.01 52.02 0.538

Purity* 1.0 41.26 51.49 0.527
Purity* 3.0 42.40 52.34 0.550
Purity* 5.0 42.30 51.97 0.562
Purity* 9.0 41.53 50.86 0.567
Purity* 30.0 40.33 49.30 0.563

 

Table 4. Comparison of retrieval performance 
between Bustos’s purity v.s. our purity*. 

Descriptors Weights 1R 2R 11P 
purity  33.19 42.77 0.455MRAAD 
purity* n=2.0 33.19 43.06 0.456
purity  35.64 44.75 0.451MRSPRH purity* n=3.0 36.60 45.07 0.482
purity  27.69 37.05 0.385SPRH-AAD purity* n=4.0 29.61  39.54 0.417 
purity  39.15 49.11 0.497LFD-AAD purity* n=2.0 41.60  51.93 0.531 
purity  40.95 50.55 0.517LFD-SPRH purity* n=2.0 42.46  52.68 0.539 
purity  40.57 50.72 0.518LFD-SPRH-

AAD purity* n=3.0 42.72  52.70 0.542 

4.3 Combination of heterogeneous shape 
descriptors 
In this experiment, we compared the performance of 
integrated SDs using both multiresolution and 
heterogeneous combinations of various SDs. Table 5 
summarizes the experiment. In all the results listed, 
we used the purity* adaptive weightings. In each 
combination, a best performing parameter n  is 
chosen out of the 10 candidates values of n={1.0, 2.0, 
3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0}. The Figure 6 
shows the recall-precision plot of five combinations 
selected from the Table 5.  

Table 5 and Figure 6 clearly show that combining 
multiple, heterogeneous shape descriptors via 
distances could produce significant performance gain 
compared to any one of the single resolution SDs. As 
a reference, the LFD has the 1R precision of 38%. 
The combination of LFD, AAD, and SPRH produced 
nearly 5% performance gain over that of the LFD, 
resulting in the 1R precision of 42.5%. 

Table 5. Performance comparison of some of the 
combinations tested using both heterogeneous and 
multiresolution shape descriptors. All the 
combinations used the purity* adaptive weighting. 

Shape descriptors  1R  2R  11P  
LFD 37.96  48.74 0.496 

SPRH 28.57 38.66 0.404
MRSPRH 36.60 45.08 0.482

SPRH+AAD 29.61 39.54 0.417
MRSPRH+MRAAD 37.02 46.96 0.491

LFD+AAD 41.60 51.93 0.531 
LFD+MRAAD 39.81 49.94 0.520

LFD+SPRH 42.52 52.68 0.537 
LFD+MRSPRH 42.71 51.74 0.541

LFD+AAD+SPRH 42.72 52.70 0.542
LFD+MRAAD+MRSPRH 41.37 51.15 0.534

MRLFD+MRAAD+MRSPRH 42.31 51.97 0.543
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On the other hand, combinations of the LFD with the 
MR shape descriptors did not produce consistent and 
significant performance gain. The reason for this 
may be attributed to the AMR model, the purity* 
adaptive weighting scheme, or both. Further study is 
needed to determine the exact cause.  

5. CONCLUSION AND FUTURE 
WORK 
In this paper, we explored a systematic approach for 
improving shape-based retrieval performance of 3D 
shape models. Our approach is to (1) extract as many 
(mutually independent) shape features as possible, 
and (2) combine the distances computed using these 
features by using an adaptive weighting scheme. To 
extract different shape features, the method 
employed a combination of multiresolution shape 
descriptors and heterogeneous shape descriptors. We 
used the 3D alpha-shape [Edelsbrunner94] based 
method we have proposed previously [Ohbuchi03] to 
capture multiresolution shape features. To combine 
distances computed using these shape descriptors, we 
adopted Bustos’s purity weighting scheme with 
slight modification.  

Experiments showed that the proposed method of 
integrating multiresolution and heterogeneous shape 
descriptors is effective in improving retrieval 
performance. Many combinations of the shape 
descriptors we tested surpassed the performance of 
the arguably the best (single) shape descriptor, the 
Light Field Descriptor by Chen, et al. [Chen03].  
We intend to explore better adaptive weighting 
schemes and better multiresolution shape feature 
extraction approaches. 
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Figure 5. Performance gain due to the multiresolution approach. The multiresolution shape descriptors using AMR increased 
performance of many but not all of the SDs.  
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Figure 6.  Precision-recall plots of some of the combinations of descriptors. Some of the combinations significantly 
outperform the LFD [Chen03], arguably the best single shape descriptor to date. 
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