
Exposing Application Graphics to a Dynamic
Heterogeneous Network

John Stavrakakis
jstavrakakis@vislab.usyd.edu.au

Zhen-Jock Lau
zhenjock@gmail.com

Nick Lowe
nickl@vislab.usyd.edu.au

Masahiro Takatsuka
masa@vislab.usyd.edu.au

ViSLAB, The School of IT
The University of Sydney

ABSTRACT

With the abundance of high performance personal computers, rendering thousands to millions of polygons per second is an
inexpensive task. In recent years, there have been advances in networking technologies that have enabled applications to
become distributed over a network and many applications require this functionality. These applications can range from driving
a large display, collaborating over an internet, or supporting pervasive environments. Solutions currently exist in providing
graphics over a network. However, they are usually targeted to satisfy particular problem domains or are otherwise difficult
to adopt as applications require major adjustment. OpenGLR© is a graphics drawing library. Although many applications
have made use of this API, few provide direct interaction within networked environments. In this paper we present Lumino,
a framework that enables graphics from an existing OpenGL application to become available to a dynamic heterogeneous
network. What differentiates Lumino from prior work is that it provides this functionality to existing unmodified applications
at a very low level and is capable of supporting flow control, quality and scalability. Moreover, it is targeted at wide adoption
and will be released under a Free Software license.

Keywords: Graphics, OpenGL, Network, Remote Rendering, Collaborative Environment, Visualisation, Grid

1 INTRODUCTION

Over the years computer graphics has seen many ad-
vances in the area of graphics hardware, software for
new functionality in graphics APIs, and algorithms for
new rendering techniques in complex modelling. An
emerging trend for computer graphics is migration from
single to multiple display devices or graphics accelera-
tors. As this trend continues, a network will be needed
to support this activity between multiple devices[19].

The OpenGL[17] API is an application programming
interface that allows a programmer to access the fea-
tures of the underlying graphics hardware. It has been
accepted as an industry standard under which many ap-
plications have been developed. While the needs of lo-
cal graphics resources have been satisfied, the advent
of fast networking technologies has made it feasible to
transport graphics over a network. As this became more
apparent, applications have begun to utilise proprietary
protocols for distributing graphics over a network. This
does not extend to existing applications as they would
require reimplementation and integration.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG 2005 conference proceedings, ISBN 80-903100-7-9
WSCG’2005, January 31 – February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Our solution Lumino, addresses the many issues in-
volved with transporting OpenGL graphics over a net-
work. It is able to provide fundamental services includ-
ing flow control, state management to support dynam-
ically connecting clients and peer-to-peer connectivity.
It additionally enables applications making use of the
OpenGL API to transparently distribute an OpenGL
stream to multiple recipients who are able to dynam-
ically connect and disconnect. As a result, applica-
tions need not be reimplemented, a scalable number
of clients can share graphics of an application while
quality graphics is provided. The parser, code genera-
tion, networking, and fundamental algorithms (for state
management, encoding, decoding, and network trans-
mission with flow control) are currently implemented in
Lumino. Lumino will be made available under GPL[8],
as complete OpenGL function coverage remains ongo-
ing work.

The rest of this paper is structured as follows. We first
assess existing solutions; outline our approach, present
implementation details and their results. Finally, we
conclude with a short discussion, and a brief outline of
future work.

2 RELATED WORK
In this section we discuss previous work with particu-
lar emphasis on GLX [21] and Chromium [11]. These
systems provide a foundation for some aspects of Lu-
mino, but differ greatly in global design and applica-
tion domain. This distinction is clarified in section 3.
These systems have a number of features in common

WSCG2006 Full Papers proceedings 71 ISBN 80-86943-03-8



with Lumino, but are not functionally equivalent. Both
are freely available, use well-defined non-proprietary
protocols for sending rendering command streams over
a network, and are designed for applications that use
OpenGL documented capabilities of existing propri-
etary systems.

2.1 GLX
A standard technique for remote display of 3D appli-
cations is GLX, the “OpenGL Extension to the X Win-
dow System”. The X Window System[9] was devel-
oped to provide a network transparent user interface
with rendering on a remote server. The X protocol is
a client-server protocol in which applications are run
on the client machine and display requests are sent to a
server. This design allows application data and process-
ing to be performed locally with window management
and drawing to be handled transparently at the server. It
is highly portable because any X client can connect to
any X server, regardless of platform or operating sys-
tem. Moreover, since all communication is handled by
the client-side X library (Xlib) and the X server, appli-
cations do not have to be network aware.

GLX enables OpenGL applications to draw to win-
dows provided by the X Window System. It is com-
prised of an API, an X protocol extension, and an X
server extension. When using GLX for remote render-
ing, GL commands are encoded by the client-side API
and sent to the X server within GLX packets. These
commands are decoded by the X server and submitted
to the OpenGL driver for rendering on graphics hard-
ware at the server. Importantly, GLX provides a net-
work transparent means of remote rendering to any X
server that supports the extension. It also specifies a
standard encoding for GL commands.

Figure 1 illustrates GLX. An application that uses
the GLX API can send GL render requests to a remote
X server that supports the GLX server extension. GL
commands are encoded in the GLX packet, which is it-
self inserted into an X packet. Any number of clients
can connect to an X server, but a client will only ever
connect to a single X server. GLX is limited because of
these characteristics. Rendering is always necessarily
server-side and it cannot support GL command stream-
ing to multiple remote displays.

2.2 Chromium
Chromium is a well established and widely used for
rendering on display clusters. It is based on another
technology called WireGL [10]. One of the major ad-
vantages of Chromium is that it enables users to con-
struct a high-performance rendering system, which is
capable of large scale complex rendering. Moreover, it
can drive a large multi-display system to display high-
resolution images. It is possible to create a remote ren-
dering system based on Chromium and video streaming

Figure 1: GLX is composed of a client-side API, a
protocol for GL command stream encoding, and an
X server extension (all components shown in orange).
The application resides on the client machine and the
display is connected to the server (both indicated in
light blue).

or via its reflect SPU. However, this approach would be
very inflexible and would not scale well in dynamically
supporting multiple clients/rendering tasks.

Figure 2 illustrates Chromium’s distribution model.
It is a general node-based model for stream process-
ing. A node accepts one or more OpenGL command
streams (GL streams) as input and outputs GL streams
to one or more other nodes. Each node contains one
or more Stream Processing Units (SPUs) that modify
the GL stream. Rendering or display can occur at any
node in the graph. This depends entirely on whether the
SPUs on the node perform rendering or display. One
characteristic of Chromium that is not illustrated in the
figure is that configuration of the graph is centralized
and set at system initialization. This is suitable for ded-
icated clusters (with fixed, single-purpose resources),
but not ideal for grid computing (with heterogeneous
resources that are dynamically added and removed, and
also available for other services).

Chromium follows the OpenGL Stream Codec
(GLS)[6] to encode GL commands. GLS defines
methods to encode and decode streams of 8-bit values
that describe sequences of GL commands invoked by
an application. Chromium, however, employs its own
optimized protocol to pack all opcodes into a single
byte. Hence, any stream produced becomes specific to
Chromium. While this feature enables Chromium to
achieve excellent cluster-based rendering performance,
the portability of the generated stream becomes a
limiting factor for extending Chromium into other
OpenGL based projects.

2.3 Commercial remote visualization
products

There are a number of commercially available solutions
to provide visualization capabilities to remote users,
such as SGIs OpenGL Vizserver[18], Teraburst[14] and

WSCG2006 Full Papers proceedings 72 ISBN 80-86943-03-8



Figure 2: Chromium has a flexible configuration sys-
tem that arranges nodes in a directed acyclic graph
(DAG). Each node can take input from, and send out-
put to, multiple nodes. A client node takes GL com-
mands from an application and creates a GL command
stream. A server node takes GL commands from an-
other node (and usually renders the stream on local
hardware). Because Chromium is usually used for re-
mote display, this diagram shows rendering and display
at a server node. However, it is important to note that
rendering (and display) can occur at the any node.

Sun Microsystems’ VisGrid[13]. However, they all re-
quire a proprietary protocol and a communication chan-
nel to exchange and control visual information. In con-
trast, most grid services are based on open source appli-
cations. Moreover, many resources are heterogeneous
in their nature. Hence, the software infrastructure pro-
viding such grid services must allow users and research
communities to construct and provide grid resources
without being restricted to a particular platform tech-
nologies. As many commercial remote rendering solu-
tions are used along with the data grid, computational
grid and access grid, they are not a part of grid services.
Therefore, users have to access such facilities in a con-
ventional client/server manner and the system is nor-
mally configured at the beginning of each session.

Although these commercial and proprietary solutions
provide a high and stable performance, many graphics
and visualization projects continue to use commodity
based approach, such as Chromium, due to the follow-
ing reasons as described by Samanta et al.[16]:

• Lower-cost Price performance ratio of consumer
hardware vs. custom architectures

• Technology trackingRate of performance improve-
ment in consumer hardware exceeds that of custom
architectures, consumer hardware is also easier to
upgrade

• Modularity & flexibility Networked systems allow
PCs to be added or removed, and enables PCs to be
used as other resources not only for rendering

• Scalable capacity The aggregation of compute
power, storage, and bandwidth capacity in a network
of PCs scales easier than that of multiprocessor
architectures, which are limited by the complexity
of their interconnects.

3 OUR WORK

Current widely used cluster rendering systems are tar-
geted at the provision of a high-performance rendering
capability to a local display system. Solutions to remote
rendering currently exist. However, they are based on
proprietary commercial solutions, and are difficult to
integrate with open source grid infrastructures.

We have developed an open source remote distributed
rendering system named Lumino. Figure 4 shows the
basic system diagram of how Lumino interacts with a
client application and remote rendering system. At any
given instance, it appears very similar to the Chromium
model. However, it is a dynamic system with a fun-
damentally different processing model also detailed in
figure 3.

Figure 3: This diagram illustrates the differences be-
tween the Chromium and Lumino distributed process-
ing models. Chromium adapts a global processing
model composed of an initial configuration stage fol-
lowed by stream processing on static nodes. Lumino
uses a dynamic local reconfiguration model that allows
nodes to connect and disconnect at runtime. This re-
moves the need for an initial global configuration stage.
Note that node connection and disconnection in this
diagram refers to connection to the system (stream
processing at each node can involve input and output
to/from many other nodes).

WSCG2006 Full Papers proceedings 73 ISBN 80-86943-03-8



Figure 4: At any given time, a Lumino network configu-
ration looks similar to a Chromium configuration. It has
nodes arranged in a graph, in which each node can
take input from, and send output to, multiple nodes. A
client node takes GL commands from an application
and creates a GL command stream. A server node
accepts GL commands from another node. It is impor-
tant to note that this diagram represents a system-wide
snapshot and that node connections are dynamic. Also
of note is that rendering (and display) can occur at any
node.

3.1 Framework
The OpenGL stream is a sequence of serialised
OpenGL commands intercepted by the application.
Each command in the stream uses a unique identifier
to recognise the OpenGL API call it represents, termed
anopcode. The Lumino framework consists of several
components; each strictly requires an interface to
an OpenGL stream. For the OpenGL stream, we
adopted the GLX protocol as it can readily interface
with existing GLX servers. It is also well-defined for
interoperability of future OpenGL functionality and
its opcode identifiers. To describe processes among
machines in the system, we term them producers or
consumers of an OpenGL stream.

3.2 State Management
State management is a component that aims to main-
tain a representation of an applications OpenGL con-
text, that is, the state of the OpenGL machine. This
influences how rendering is done, for example which
lights are enabled, what are their attributes etc.

State management is required to keep the state of sep-
arate OpenGL machines synchronised. This enables
the rendering process foreachmachine to produce the
same results that are intended by the application. In
addition, state management allows any consumer to dy-
namically connect and render frames of the application.

The OpenGL API contains commands that influence
the state of the OpenGL machine. These commands are
captured from the stream and appended to an OpenGL
state stream; representing the OpenGL context. The
state stream must remain consistent, transparent and
incur low computational cost. These are the require-
ments of state management. In being consistent, the
state stream remains in order, thus allowing their exe-
cution in a new OpenGL context to result in the same
graphics state. It is transparent such that only a GL
stream is interfaced. State is arranged in an unknown
manner, and when a consumer requires the entire state
or a state update, a GL stream is returned. That is, no
explicit state information is sent.

To simply append state commands to a data structure
would lead to a memory explosion. Our backend im-
plementation uses a data structure that can efficiently
manipulate commands such that they are deleted when
certain conditions are satisfied. For example, when GL
commands operate on matrix transformations that are
later reset with the identity matrix, the previous trans-
formation is no longer required. There are many such
relationships between OpenGL commands that cause
redundancy in similar ways. Results indicate that the
costs associated with performing checking and reduc-
tion can be implemented efficiently with the right data
structure or at best with an entire emulation of the
OpenGL state machine.

In providing state management, consumers are able
to connect at any time. Our interface strictly remains
a GL stream, thus consumers need only understand
one protocol rather than deal with synchronisation from
out-of-band communication. This idea extends the sim-
plicity of designing a system where only graphics is
outputted on the network interface. As many good
OpenGL applications make heavy use of server side
state; clients on low bandwidth connections are able to
download the state environment as an OpenGL stream
and then experience remote rendering without the im-
pact of network bandwidth.

3.3 Flow Control

Bottlenecks evident between OpenGL applications and
the rendering backend are typically dependent on data
transfer rates on AGP/PCI buses, execution rate of the
application, and deliverable performance of the graph-
ics card. These bottlenecks also exist across networks,
the only difference being that the network changes from
local AGP/PCI to LAN/WAN. Bandwidth is a major
problem for transferring graphics and it remains a crit-
ical goal to many existing solutions to minimise band-
width usage. Prior approaches taken usually result in
optimised proprietary protocols and limited extensibil-
ity for widespread use. Lumino supports an interoper-
able means to distribute graphics over a network. In
coping with limitations of underlying network capac-

WSCG2006 Full Papers proceedings 74 ISBN 80-86943-03-8



ities, flow control is available to compensate for low
bandwidth consumers.

In heterogeneous environments, performance of dif-
ferent graphics hardware can vary greatly. By selecting
OpenGL as the abstraction of graphics resources, we
are able to use the API to gain performance feedback
of the graphics hardware itself. The Lumino processing
model permits each consumer to use out-of-band com-
munication channel for relaying performance feedback
information. This allows the consumer to control the
bit-rate or frame-rate at which the rendering commands
are received. While consumer oriented flow control is
desirable, the producer may choose to throttle all con-
sumers to a specific rate. This way, a producer remains
in control for coordinating the resources of multiple
consumers. This mechanism helps the producer, con-
sumer, and the network in only utilising those resources
required.

Figure 5: In this figure the application is capable of
generating 100 frames per second. Lumino producer
is able to negotiate rate control parameters among sev-
eral consumers to satisfy any of bandwidth, processing
or privilege requirements of all concerned.

3.4 Scalability
Scalability of network based graphics solutions can be
defined as being resolution scalable, data scalable, con-
sumer scalable or hardware scalable[7]. There are many
limitations of existing solutions to provide remote ren-
dering to a scalable number of consumers[20]. This
is typically the case as they create centralised environ-
ments that put greater load on the server which would
otherwise be uniformly distributed on the network. Our
initial design sought TCP as a first solution in bringing
graphics over a network. TCP offers many benefits to
simplify implementation, but lacks point-to-point scal-
ability.

Many P2P (peer-to-peer) solutions [1, 2, 3] allow
consumers of a data stream, to become producers of
that data stream to other parties. Lumino has applied
the idea on sharing data stream, the only difference be-
ing that the stream is GL. This is achievable by being

able to dynamically monitor and export the OpenGL
context on-demand, enabling greater scalability as any
consumer can now become a producer. The participa-
tion of new consumers is no longer burdening the sin-
gle original producer; but rather, one of multiple pro-
ducers as demonstrated in figure 6. By distributing the
load among all parties involved, not only does scalabil-
ity improve, but the requirements of the networks are
eased which would otherwise be centralised and cause
"hot-spots".

Figure 6: An application may be runnable on a device
such as a laptop but is not capable of supporting more
than one client due to processing limitations. To host
this application for potentially hundreds of consumers,
a more resourceful machine can be used to host the
GL stream as a proxy to consumers. This alleviates
any burden on the device to deliver processing and
network resources. Furthermore, the GL stream can
extend to other networks that can present the gateway
to receiving the stream.

There remains a lingering issue of latency. For how
long a chain of consumers will it be infeasible? This
primarily depends on the underlying network hardware,
but more importantly the amount of data generated by
the application. The latency limitations are explored in
the following section.

4 RESULTS

4.1 Processing overhead
Applications that run with Lumino are subject to over-
head from encoding, state management and network
I/O. We use three metrics to measure the performance
of applications under Lumino, they are: frame rate, in-
dicating how many frames per second can be rendered,
execution rate, being the number of GL commands gen-
erated by the application, and byte rate, being the num-

WSCG2006 Full Papers proceedings 75 ISBN 80-86943-03-8



ber of bytes generated after encoding. In this paper,
we present experiments using two applications. The
XScreenSaver[22] package contains various OpenGL
programs that are used as screen savers. These are
very simple with respect to demands and coverage of
OpenGL. A more complicated and demanding applica-
tion is the game application Tuxracer[4]. The machines
used in testing are illustrated in table 1. Figures 7 and
8 describe the frame rate performance of Molecule and
Tuxracer.

Machine Specification
kat P4 2.4GHz, 512MB RAM

NVIDIA GeForce FX 5200/PCI/SSE2
duck Celeron 2.2GHz, 256MB RAM

ATI Radeon IGP 330
grudge Dual P4 2.8GHz, 512MB RAM

NVIDIA Quadro4 750 XGL/AGP/SSE2
calvin P4 2.6GHz, 512MB RAM

NVIDIA GeForce4 Ti 4600/AGP/SSE2

Table 1: Each machine has a minimum 100Mbps eth-
ernet connection, and a Linux OpenGL driver with
hardware acceleration.

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25

frames

time(s)

molecule frame rate using various Lumino features

passthrough

3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3

3
encode

+

+ + + + + + + + + + + + + + + + + + + + + + +

+
encode + state

2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2

2 2 2

2
encode + decode

×

× × × × × × × × × × × × × × × × × × × × × × × ×

×
encode + decode + state

4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4

Figure 7: The Molecule application generates a very
small amount of data, as a result the impact of encod-
ing, state management and decoding is less noticeable
when compared with its original performance.

4.2 Scalability Testing
While Lumino is able to support consumer scalabil-
ity, the latency effects of intermittent processing be-
tween producers and consumers can affect display syn-
chronisation. We devised an experiment that investi-
gates the latency effects as the number of indirect con-
sumers increases. In our efforts to demonstrate hetero-
geneous networking, we used two LAN environments:
the School of IT (SIT), and ViSLAB shown in figure
10. In this experiment the networks and machines all
differed other than running Linux (namely Ubuntu[5])
with 32-bit graphics drivers. We ran applications on a
PC (kat) on the SIT LAN; the Lumino stream was then
transmitted to a PC in ViSLAB (grudge), then to an-
other ViSLAB PC (calvin), then to a laptop (duck) in

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25

frames

time(s)

tuxracer frame rate using various Lumino features

passthrough
3

3

3 3 3
3

3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3

3
encode

+

+

+
+ +

+
+ +

+ +
+ + + + + + + + + + + + + +

+
encode + state

2
2

2 2 2

2
2

2
2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2
encode + decode

×

× × × × ×
× × × × × × × × × × × × × × × × × ×

×
encode + decode + state

4
4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4

Figure 8: The Tuxracer application, is constantly sub-
mitting data to OpenGL. As a result the cost involved
with encoding the OpenGL commands becomes a
much larger issue than that of state management. It
is important to note that a typical producer will be host-
ing the application by only performing encoding and
state management. The lines with decoding indicate
that decoding an already encoded OpenGL stream
is marginally small. Consumers receive an OpenGL
stream that is already encoded, thus the processing
overhead is much smaller for them.

SIT, and finally to the original SIT PC kat. Figure 9
depicts this arrangement.

Figure 9: The Lumino stream begins at kat, it is for-
warded to grudge, calvin, duck and finally again to
kat. With the initial and resulting stream simultane-
ously rendered at kat we are able to observe the effects
of latency over a 100Mbps network.

As the communication of Lumino remained TCP, the
round-trip-times of each hop were measured with ping
of maximum IPv4 sized packets shown in figure 2.

ping rtt (ms)
kat->grudge 32.338

grudge->calvin 11.801
calvin->duck 31.399

duck->kat 35.989
total 111.527

Table 2: Average round-trip-time between machines
detailed in table 1.

We modified gltext, to render a string representing
the time in milliseconds. The round trip time difference
for this application is measured by taking a snapshot of
both renders. Shown in figure 11.

Our theoretical round trip time was measured at ap-
proximately 111ms. This did not explain the latency

WSCG2006 Full Papers proceedings 76 ISBN 80-86943-03-8



Figure 10: The organisation of the SIT and ViSLAB
networks are bridged by a much larger USYD network,
each uses different technologies including both Gbps
and Mbps. We present these results knowing that
the communication between all machines is limited to
100Mbps.

Figure 11: The left render is performed locally, whilst
the right has been transmitted through 4 hops before
rendering. The numbers from both indicate the current
time from the source; the difference represents the la-
tency which is approximately 987ms.

presented here. The factors that introduced latency in-
clude:

• Firewall processing - for the interests of SIT, packets
are delayed at the firewall for security.

• TCP latency and processing - under TCP, process-
ing of packets must continue to the application level,
considering the burden on each machine there will
be delay. In each machine the GL stream is received,
the data is moved up through to the application level,
and then pushed back down the stack for forwarding.

• Higher data throughput - the amount of data is pro-
portional to the latency cost as a result of both trans-
mission and additional processing.

• Incurred cost of state management has mostly af-
fected the less powerful machines, namely the lap-
top duck. State management remains a backend
modular component, as such other approaches are
yet to be evaluated.

In exploring a more demanding application, we found
Tuxracer provides a more network intensive latency test
under the same conditions, shown in figure 12.

Figure 12: As before, the left indicates the local render,
while the right has been transmitted through 4 hops
before rendering. Using the rendered timer, the differ-
ence can be observed to be about 480ms; on average
we found it to be approximately 940ms.

As Tuxracer incurs a similar latency cost with greater
bandwidth requirement, we can conclude that Lumino
is scalable, but remains bound to the underlying net-
work technology.

To improve on the scalability, we are able to imple-
ment a multicast based replacement over TCP in a sim-
ilar manner to Broadcast GL[12]. However, support for
multicast networks are limited over an internet which
would otherwise require reservation of IP addresses. In
consideration of the user, this is not a requirement but
an option.

5 CONCLUSION AND FUTURE
WORK

We have presented Lumino, a framework that enables
graphics from an existing OpenGL application to be-
come available to a dynamic heterogeneous network.

Solutions available to providing graphics over a net-
work are able to offer flexibility in their own domain.
However, they exist with proprietary interfaces or have
limited applicability in the broad resolution of network
based graphics.

We have defined a unique and novel problem state-
ment that Lumino addresses. Lumino is built from
the aspects of existing solutions, the implementation of
peer-to-peer scalability, flow control and dynamic con-
nectivity are new features founded by Lumino.

Lumino already maintains large application support
via the OpenGL API. It is complementary to existing
technologies like that of Chromium and VNC. More-
over, it is established as a working product and model.

Its future development envisages innovative uses for
transporting graphics over a network. As such, there
are many research challenges that await Lumino, one
of them describing a realtime system.

5.1 Future Work
There are many possible outcomes that Lumino is able
to offer. In understanding that existing solutions pro-

WSCG2006 Full Papers proceedings 77 ISBN 80-86943-03-8



vide focused objectives for application domains we are
hoping to use Lumino to bridge such technologies to-
gether

• Transparent collaboration - applications are usually
written without concern for network interoperabil-
ity. As the software becomes a useful tool, VNC is
used to view and control the application remotely.

• Lumino currently provides a one-to-many arrange-
ment from single producer to multiple consumers.
We are in the process of implementing a many-to-
one and many-to-many arrangement, such that one
consumer can have multiple producers for a single
OpenGL context. We can interpret the scenario as
"compositing" OpenGL streams. This permits ge-
ometry from one application to mix with geometry
from another creating a hybrid rendered image. It
presents an interesting gateway to a new breed of
network enabled graphics applications.

• As the amount of geometry used in the render gener-
ates greater bandwidth, Lumino is not data scalable.
The contrasting solutions are remote frame buffer
such as VNC[15] where it is not resolution scalable.
We aim to find a method by which we can gradually
alter the bandwidth usage from sending geometry to
sending images. This slider like control is desirable
for consumers on heterogeneous networks.

REFERENCES
[1] BitTorrent. http://www.bittorrent.com/, 2005.

[2] eMule. http://emule.org/, 2005.

[3] The FreeNet Project. http://freenet.sourceforge.net/, 2005.

[4] Tux racer. http://tuxracer.sourceforge.net/, 2005.

[5] Ubuntu - linux for human beings. http://www.ubuntulinux.org/,
2005.

[6] Craig Dunwoody. The openglR© stream codec: A specification.
Technical report, Silicon Graphics, Inc., October 1996.

[7] Matthew Eldridge, Homan Igehy, and Pat Hanrahan.
Pomegranate: a fully scalable graphics architecture. In
SIGGRAPH ’00: Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, pages 443–454,
New York, NY, USA, 2000. ACM Press/Addison-Wesley
Publishing Co.

[8] Free Software Foundation. Gnu general public license.
http://www.fsf.org/copyleft/gpl.html.

[9] X.Org Foundation. About the X Window System.
http://www.x.org/X11.html, 2005.

[10] Greg Humphreys, Ian Buck, Matthew Eldridge, and Pat Hanra-
han. Distributed rendering for scalable diaplays. InProceedings
of the 2000 ACM/IEEE Conference on Supercomputing, page
Article No. 30, Washington, DC, USA, 2000. IEEE Computer
Society, IEEE Computer Society.

[11] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean
Ahern, Peter D. Kirchner, and James T. Klosowski. Chromium:
A stream-processing framework for interactive rendering on
clusters.ACM Transactions on Graphics, 21(3):693–702, July
2002.

[12] Tommi Ilmonen, Markku Reunanen, and Petteri Kontio. Broad-
cast gl: An alternative method for distributing opengl api calls

to multiple rendering slaves. InWSCG’2005: The Journal
of WSCG, volume 13, Plzen, Czech Republic, 2005. Science
Press.

[13] Sun Microsystems. Sun fireTM visual grid system architecture
- building scalable and flexible high-end visualization systems.
Technical white paper, Sun Microsystems, November 2003.

[14] TeraBurst Networks. Immersive visualization the-
ater connectivity over the wide area network.
http://www.teraburst.com/technology/wavs.pdf, October
2002. http://www.teraburst.com/technology/wavs.pdf.

[15] RealVNC Ltd. RealVNC: the original open-source cross-
platform remote control solution. http://www.realvnc.com,
2005.

[16] Rudrajit Samanta, Thomas Funkhouser, Kai Li, and
Jaswinder Pal Singh. Hybrid sort-first and sort-last paral-
lel rendering with a cluster of pcs. InHWWS ’00: Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS workshop on
Graphics hardware, pages 97–108, New York, NY, USA, 2000.
ACM Press.

[17] Mark Segal, Kurt Akeley, Chris Frazier, Jon Leech, and Pat
Brown. The openglR© graphics system: A specification. Tech-
nical report, Silicon Graphics, Inc., October 2004.

[18] Silicon Graphic, Inc. OpenglR© vizserver 3.1: Appliation-
transparent remote interactive visualization and collaboration.
White paper, Silicon Graphic, Inc., Mountain View, CA, USA,
April 2003.

[19] John Stavrakakis, Nick Lowe, Masahiro Takatsuka, and Zhen-
Jock Lau. An On-demand Streaming Protocol for 3D Graphics
on the Grid. APAC 05, 2005.

[20] John Stavrakakis, Masahiro Takatsuka, Nick Lowe,
and Zhen-Jock Lau. Lumino: Platform inde-
pendent remote distributed rendering framework.
http://wiki.vislab.usyd.edu.au/moinwiki/Lumino, 2005.

[21] Paula Womack and Jon Leech. OpenglR© graphics with the
x window systemR©: Version 1.3. Technical report, Silicon
Graphics, Inc., October 1998.

[22] Jamie Zawinski. XScreenSaver: A screen saver and locker
for the X Window System. http://www.jwz.org/xscreensaver/,
2005.

WSCG2006 Full Papers proceedings 78 ISBN 80-86943-03-8


	C73-full.pdf
	F37-full.pdf
	G31-full.pdf
	C73-full.pdf
	INTRODUCTION
	ATLAS OF DISCOIDS AND Z-BUFFER
	The atlas of discoid
	Z-Buffer and fragment

	ADAPTATIONS FOR REAL-TIME VISUALISATION
	Geometrical considerations
	Level of details
	Illumination model

	RESULTS
	CONCLUSION AND FUTURE WORKS
	REFERENCES

	C71-full.pdf
	B29-full.pdf

