
GPU real time hatching

Suarez Jordane
Université Paris 8
2 rue de la liberté

93526, Saint Denis,
France

suarez@ai.univ-paris8.fr

Belhadj Farès
Université Paris 8
2 rue de la liberté

93526, Saint Denis,
France

amsi@ai.univ-paris8.fr

Boyer Vincent
Université Paris 8
2 rue de la liberté

93526, Saint Denis,
France

boyer@ai.univ-paris8.fr

ABSTRACT
Hatching is a shading technique in which tone is represented by a series of strokes or lines. Drawing using this
technique should follow three criteria: the lighting, the object geometry and its material. These criteria respectively
provide tone, geometric motif orientation and geometric motif style. We present a GPU real time approach of
hatching strokes over arbitrary surfaces. Our method is based on a coherent and consistent model texture mapping
and takes into account these three criteria. The triangle adjacency primitive is used to provide a coherent stylization
over the model. Our model computes hatching parameter per fragment according to the light direction and the
geometry and generates hatching rendering taking into account these parameters and a lighting model. Dedicated
textures can easily be created off-line to depict material properties for any kind of object. As our GPU model is
designed to deal with texture resolutions, consistent mapping and geometry in the object space, it provides real
time rendering while avoiding popping and shower-door effects.

Keywords
non-photorealistic rendering, hatching, stroke based texture, shading, GPU

1 INTRODUCTION
Hatching is an artistic drawing technique that consists
in drawing closely spaced lines to represent objects.
Artists depict tonal or shading effects with short lines.
Parallel lines or cross lines can be used to produce
respectively hatching or cross-hatching. Hatching is
commonly used in artistic drawing such as comics but
is also largely used in specific visualization systems
such as archeology, industry and anatomy. Hatching
can also be used as a common way to promote any
kind of products. Hatching generally refers only to
lines or strokes. We prefer the term of geometric
motifs including various possible patterns and dots,
lines or cross lines. Artists can thus provide hatching,
cross-hatching as well as stippling.

Hatching is produced by the artists following three
criteria: lighting, object geometry and object material.
These criteria provide tone, geometric motif orientation
and geometric motif style. The tone of the geometric
motif used for hatching refers to the lighting equation.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Geometric motif orientation is provided by the object
geometry and the direction of light. Finally, depending
on the object material, different geometric motifs can
be used.

This paper presents a method for real time hatching
considering these three criteria. Our model is relevant
in all interactive applications such as games, scientific,
educational or technical illustrations. As it is often
mentioned in non-photorealistic rendering (NPR) work,
the lack of temporal coherence in stroke placements
and image-based approaches respectively produce
flickering and shower-door effect during animations.

We deal with objec-space coherence by considering
that stroke width and density should be adjusted to
camera, lighting and scene transformation. Desired
tones should be maintained even as the object moves
toward or away from the camera. We propose a
full GPU implementation able to generate hatching
strokes on 3D scene. As [Pra01], we address the
same challenges: (1) limited run-time computations,
(2) frame-to-frame coherence among strokes, and (3)
control over stroke size and density under dynamic
viewing conditions.

But by opposition to the previous work, we consider
that the stroke orientations directly depend on the light
direction and should be computed per fragment. In

Journal of WSCG

Volume 21, 2013 97 ISSN 1213-6972

fact, as mentioned above, artists choose the geometric
motif orientation according to the geometry and the
light direction. As artists do, we provide a model able
to consider these two constraints. Rare are the previous
work in which the light direction is considered. In our
approach, we address these challenges by providing
a new texture mapping model that deals with modern
geometry stage hardware.

In this paper, we provide a hatching rendering that sat-
isfies the three criteria. This is achieved noticeably
through:

• Hatching parameter computations per fragment ac-
cording to the light direction and the triangles topol-
ogy;

• Generation of hatching renderings that take into ac-
count these parameters and a lighting model.

We first present the related work in NPR domain
dedicated to stroke based renderings. Then we present
our model and its implementation. The performance
of our model are discussed and the results demonstrate
the relevance of our solution in the hatching problem.
Finally, we conclude and propose future work.

2 PREVIOUS WORK
Hatching can be considered as a subset of drawing or
painting style in which individual strokes are produced.
Most related work have been presented as NPR papers.
For that reason, we present hereafter related work on
stroke based NPR.
Stroke based NPR can be categorized into two kinds of
methods depending on the type of treated primitives.
Some focus on pixel buffers while others deal with
geometric objects. Below, we present general stroke
based methods according to this classification, image
space or object space, and particularly focus on specific
hatching ones.

Image space methods use images in order to extract
color, depth or tone information. In this kind of
approaches the main challenge lies in geometric motif
orientation:
In [Hae90], P. Haeberli has presented a method that
creates impressionist paintings from images using
"brush-strokes". The orientation of strokes depends on
image gradient and direction fields.
In [Sal94], the proposed method aims to generate pen
and ink illustrations from images by placing stroke
textures. The orientation of these textures is computed
according to the image gradient and the user defined
directions.
In [Win96], the authors have created pen and ink

rendering from a viewpoint of 3D scenes. To achieve
this goal, the method uses controlled density hatching
and user defined directions.
The model proposed in [Sal97] produces pen and ink
style lines from images or a viewpoint of 3D models.
In this model, strokes are oriented according to the
direction fields.
In [Sai90], the authors have proposed to produce line
drawing illustration from a viewpoint of 3D scenes
according to curved hatchings and "G-Buffer". This
specific geometric buffer contains geometric surface
properties such as the depth or the normal vector of
each pixel. The curvature is extracted for each object
and indicates its topology. Hatching is then automati-
cally produced using curvature and other information
like rotations or texture coordinates.

The main drawback of these methods remains the
appearance of the shower-door effect. In fact, as the
geometry of these scenes is rarely considered, lighting,
depth and other 3D information are almost never taken
into account.
Then, we prefer approaches that focus on 3D model
information.

In object space methods, additional information such
as light position, depth and normal of each vertex can
be extracted from geometry:
In [Deu00], the proposed method generates pen and
ink illustrations using different styles such as the cross
hatching and according to the object normals and the
scene viewpoint.
The method presented in [Kap00] creates some artistic
renderings particularly "geograftals" strokes (oriented
geometric textures) according to the principal curvature
of the 3D models.
In [Lak00], Lake & al. have presented a method that
produces stylized renderings like pencil and stroke
sketch shading which orientation depends method
also allows the user to create cartoon rendering of 3D
models.
In [Her00], the authors have proposed a method to
generate line art renderings using hatch mark and
generated smooth direction fields.
In [Pra01], non-photorealistic renderings with textures
of hatching strokes called "tonal art map"(TAM) are
described. Multitexturing is used for rendering TAMs
with spatial and temporal coherence. Orientation of
textures is computed according to a curvature based on
direction fields and lapped texture parametrization (set
of parametrized patches).
In [Web02], Webb & al. have presented two real
time hatching schemes based on TAM. This method
avoids blending or aliasing artifacts using a finer TAM
resolution. We can notice that one of this scheme
supports colored hatching.

Journal of WSCG

Volume 21, 2013 98 ISSN 1213-6972

In [Coc06], a model for pen and ink illustrations using
real time hatching shadings is proposed. This approach
is hybrid and combines image space and object space
stroke orientation methods. Stroke orientations are
computed according to a combination of dynamic
object space parameterizations and view dependent
ones. It permits a better spatial coherence than the
object-space approaches and reduces the shower-door
effect compared to image-based hatching methods but
is dedicated to specific geometries such as tree models.

The main drawback of this kind of methods is the
texture discontinuity. As texture coordinates are
independently generated for each triangle, a possible
discontinuity may be introduced and visible artifacts
may be generated.

3 OUR MODEL
We aim to produce hatchings according to the previ-
ously described three criteria. Tone, form and material
should provide a coherent and consistent hatching. As
described in [Pra01], we think that a texture based ap-
proach is suitable to achieve the hatching and different
materials can be depicted by the texture variety. Form
and tone should be the result of a lighting model but by
opposition to the related work, in our approach, the ge-
ometric motif (i.e strokes or lines for example) orienta-
tion also depends on the light direction and not only on
the model curvature. As a consequence, textures should
contain set of continuous tones.
We detail our solution realized in four steps:

1. The generation of textures representing tones: each
generated texture represents a tone composed by a
geometric motif (for example a set of lines, strokes
or points). The set of generated textures should con-
tain a set of continuous tones (see figure 1). Note
that to compute a tone per fragment, we should de-
termine a texture number and texture coordinates.

2. Texture orientation and texture coordinates gener-
ation: according to the light position and for each
triangle, textures should be oriented in order to fol-
low the light displacement. Texture coordinates gen-
eration must guarantee no texture distortion for the
three vertices of each triangle. At this step, texture
coordinates are computed for a given primitive and
for each vertex (see section 3.2 and figure 3). This
provides the first part of the paper contribution.

3. Texture continuity: we ensure the texture continuity
between each triangle and its neighbors by comput-
ing a blend factor per neighbor (see section 3.3 and
figure 8). This step permits a full computation taking
into account each triangle and its neighbors and con-
stitutes the second part of this paper contribution.

4. Tonal mapping: we compute the tone per fragment
by interpolating vertex texture coordinates (step 2)
and a light equation determining the texture number.
This last computation is realized per fragment since
the texture number is not obtained by interpolation
(see figure 9). Finally, for a triangle, we blend
results provided by neighbors according to the
blend factor computed at step 3. Note that for
a given fragment in a triangle, blend factors are
interpolated (see figure 8).
Moreover, even if we present our model with a set
of textures, in practice, we have a multi-resolution
set of textures providing mipmapping and avoiding
aliasing (see figure 2). This last step generates the
final rendering using previously computed values, a
lighting model and a multi-resolution tonal art map.

Tone

Figure 1: Tonal art map example composed by 8 differ-
ent textures.

3.1 Texture generation
In our method, we use precomputed tonal art map
introduced in [Pra01], where hatch strokes are mip-
mapped images corresponding to different tones.
Tonal art map must satisfy some consistency con-
straints:

• For a given tone, all textures must have the same
grayscale average;

• geometric motifs present in a given texture must be
present in all higher texture resolutions and superior
tones;

• geometric motifs have the same form regardless to
the texture resolution. For example, lines must have
the same width and length and points must have the
same radius.

As an example, figure 1 shows a set of continuous
tones given at a high resolution (TAM). Figure 2
presents an example of multi-resolution tonal art
map: a multi-resolution tone texture deduced from
figure 1. Note that, as all mipmapping techniques, the
multi-resolution TAM will be used to avoid aliasing by
taking into account the fragment depth. So, as it is a
well-known solution, we do not consider this problem
hereafter and use only figure 1 throughout the article
to illustrate our purpose. Once we have this texture
palette, we want to determine the texture coordinates
of each vertex of our 3D model.

Journal of WSCG

Volume 21, 2013 99 ISSN 1213-6972

Tone

Resolution

Figure 2: Multi-resolution tonal art map example.

3.2 Hatching texture orientation
As described above, our approach matches the geomet-
ric motif orientation depending on the light direction.
Thus, as shown on figure 3 considering a given light
source and a 3D model, we have to orient and crop the
TAM according to the light source properties (position,
direction, cut-off and spot exponent).
To describe our model, we use the following nomen-
clature. L describes a light, −→Ld depicts its direction
while Lp depicts its position. Note that in the case
of directional light, Lp is not used. Tc is a triangle
of the 3D model and Vi (i ∈ {0,1,2}) are its vertices.
Each vertex Vi, represented by its 3D space coordinates
(x,y,z), is associated to a hatching parameter corre-
sponding to its 2D texture coordinates noted Hc

i (s, t).
Figure 5 illustrates this notation used hereafter in
the paper. As mentioned in the introduction of our
model description, in this section we present a hatching
parameter computation considering only one triangle
(i.e generalization considering triangle and neighbors
is detailed in the next section).
Since we want to guarantee no texture distortion in
the considered triangle, the applied transformations
should necessary be realized per primitive. This is
done by computing, for each triangle, its hatching
parameters according to the tangent space of the
triangle itself. This tangent space is the Tangent-
Binormal-Normal (

−→T ,
−→B ,
−→N) coordinates system

with −→B representing the vector from the triangle
toward the light, projected on the triangle plane. In
the case of positional light with its position (Lp) and
direction (−→Ld), we compute the direction to the light
per triangle (−→L) considering Gc the triangle barycenter
(i.e −→L =

−−−−→Lp−Gc). In the case of directional light, the
direction to the light (−→L) is equal to the opposite of
the light direction (−→Ld) (i.e −→L = −−→Ld). Finally, −→B is

the normalized projected vector−→L in the triangle plane.

Then, for each vertex Vi of each triangle Tc, by apply-
ing a change of basis from the object local space to
(
−→T ,
−→B ,
−→N) we obtain, for the corresponding −→T and −→B

coordinates, the vertex 2D texture coordinates stored in
Hc

i as shown in algorithm. 1:

−→N ← normalize ((
−−−−→V1−V0)× (

−−−−→V2−V0))
if the light source is positional then

G← (V0 +V1 +V2)/3;
−→L ←−−−−→Lp−G ;

else
−→L ←−−→Ld ;

end
−→B ← normalize(−→L −−→N · (−→L ·−→N));
−→T ←−→B ×−→N ;
foreach i in {0,1,2} do

Hc
i .s←Vi ·

−→T ;
Hc

i .t←Vi ·
−→B ;

end
Algorithm 1: Computing hatching texture orientation
per triangle.

This step is performed in the geometry shader stage,
for each triangle Tc expressed in the local object space.
Thus, we compute and emit for each Vi its position and
texture coordinates.

We obtain, as shown in figure 4-(a), hatchings that take
into account triangle orientations. The four triangles
presented on this figure have different normals. Remark
that hatchings on the common edges between triangles
produce stroke discontinuities. These discontinuities
are naturally due to the difference of orientation (−→T)
computed at this level but also to the difference of shad-
ing (which determines tones of the art map) computed
at the last level (fragment shader stage). To avoid this
discontinuity we propose to use the triangle adjacency
information to compute multi-texturing coordinates and
blend the result as shown on figure 4-(b). This process
is explained hereafter.

3.3 Adjacency blending
In order to ensure a continuity of textures between two
neighboring triangles we determine the contribution of
adjacent triangles in the rendering of Tc.
As shown in figure 5, triangle adjacency is a ge-
ometric primitive composed by six vertices Vi
(i ∈ {0,1,2,α,β ,γ}) describing four triangles where Tc
is the current processed triangle and Tα , Tβ and Tγ its
adjacents. This primitive is accessible in the geometry
shader stage where data of adjacent triangles (as vertex
position) are accessible during Tc processing but are
not emitted during this same process.

Journal of WSCG

Volume 21, 2013 100 ISSN 1213-6972

Lp

T

B

Gc

V0

V1

V2

Figure 3: Texture orientation on a given triangle accord-
ing to the projection of the light position.

(a) (b)
Figure 4: Hatching results on 4 adjacent triangles with
different normal vectors. (a): without blend, (b): with
blend.

We keep the main calculations of subsection 3.2 by
integrating data adjacency, calculating four different
texture coordinates per vertex of Tc. In fact, for
each vertex Vi (i ∈ {0,1,2}) we need to compute the
hatching parameters corresponding to each triangle
of the adjacency primitive. Thus, we obtain a 3D
component Ht

i with t ∈ {c,α,β ,γ} composed by
2D texture coordinates (s, t) and a blend factor f .
Ht

i depicts, for the vertex Vi, the contribution of the
triangle t in the current triangle hatching. Thus, the
triangle is textured according to the orientation of its
neighbors to the light. These coordinates are used to
mix the results by blending. For each adjacent triangle,
we compute its corresponding (

−→T ,
−→B ,
−→N) coordinates

system which we use to compute the corresponding
hatching parameters.
Figure 6 illustrates the calculation of hatching param-
eters where Tc is a triangle being processed and Tγ an
adjacent triangle. In this case, −→B is given by −−−→Gγ Lp and
−→T is calculated according to the Nγ (i.e the normal of
Tγ) and −→B .
V1, the opposite vertex to the adjacent side is projected

in the plane of Tγ . We obtain V
′
1 and use it to compute

texture coordinates of the hatching parameters Hγ

1
(hatching parameters of V1 for Tγ). This projection is
applied to all vertices of Tc and all triangles Tα , Tβ and
Tγ .

As a first approach, we propose to blend the results
given by these different texture coordinates producing
a rendering whose aspect is continuous at the junction
of triangles. Thus, we calculate a blending factor f for
each vertex per adjacent triangle. This first approach is
a compromise producing grayscale strokes (see on fig-
ure 4(b)). In practice, these artifacts are hardly visible
on a 3D model as demonstrated in the figure 10 and in
the addtional video (i.e the results section). Note that
complete approach is palnned in future work.

As shown in figures 7 and 8, for each vertex Vi, we
compute a contribution value that gradually decreases
along the triangle. Depending on the dot product be-
tween two adjacency triangle normals we ensure that
when two triangles have an angle less than π

2 radian,
there is no contribution between them. For example in
a cube, triangles of different faces should not influence
each other. So, finally we obtain four hatching parame-
ters per vertex of Tc.
We present below the algorithm 2 in which we com-
pute for each emitted vertex Vi (i.e i ∈ {0,1,2}) of Tc
its direction to the light −→ViL, the triangle normals −→Nt
(i.e t ∈ {c,α,β ,γ}) and its hatching parameters Ht

i .
These values will be used in the final step to render the
model according to a lighting model.

V0

V

V1

V

V2

V

Tc

T

TT

α

α

β

βγ

γ

Figure 5: Triangle adjacency topology. The main trian-
gle is Tc. Neighbor ones are indexed α , β , γ .

3.4 Tonal mapping
Our model is inspired both by the toon shading tech-
nique introduced in [Lak00] where the light intensity is
given by a 1D texture and a Phong shading where con-
tribution is computed per fragment.
This approach can be extended to 2D textures com-
bining lighting to a palette of textures. In the frag-
ment shader stage, by computing the dot product be-
tween fragment-light vector −→FL and the fragment nor-

Journal of WSCG

Volume 21, 2013 101 ISSN 1213-6972

foreach triangle t in {c,α,β ,γ} do
Compute normal and record it in −→Nt ;
Compute projected light direction in Tt plane
as previously described;

end
foreach vertex i in {0,1,2} do

foreach triangle t in {c,α,β ,γ} do
Compute Vi-light vector and record it in−→ViL;
if (t = c) then

Compute texture coordinates of Vi as
described in the previous subsection
and record them in Hc

i .st;
Hc

i . f ← 1.0;
full contribution of Tc;

else if Vi does not belong to Tt then
V
′
i is Vi projected in the Tt plane;

Compute texture coordinates of V
′
i in

Tt and record them in Ht
i .st;

Ht
i . f ←−1.0;

no contribution of Tt ;
else

Compute texture coordinates of Vi and
record them in Ht

i .st;
Ht

i . f ←
−→Nc ·
−→Nt ;

contribution depending on angle
between Tc and Tt ;

end
end

end
Algorithm 2: Compute Hatching parameters per Ver-
tex according to adjacent triangles.

0

T
c

G
c

L
p

V’
1

V
γ

G
γ

V
1

V
2T

γ

V

Figure 6: Texture coordinates obtained by adjacent tri-
angle: used light direction and opposite vertex projec-
tion computation for continuity.

mal −→Nt , we obtain, as shown in figure 9 the Lamber-
tian term used to find the texture number in the TAM
named Tone. Then, fragment information is automati-
cally provided by linear interpolations in the GPU and
according to each vertex information. Depending on the
blending values Ht . f , the texture coordinates Ht .st, and
the texture numbers Tone, we can compute, per frag-
ment, the final color following the algorithm 3.

dot = cos(θ) > 0

dot

dot

limit

value

0

0

limit

value

Front view Front view

Up view Up view

dot = cos(θ) <= 0

θ
θ

limit

value

limit

value

Figure 7: The blending value according to the angle be-
tween two adjacency triangles. Top of figure presents
two front views of two triangles. On the left we study
the case of cosθ > 0 and on the right we have the oppo-
site case. Bottom of figure presents the blending factor
computed per vertex and its interpolation along each tri-
angle.

Figure 8: First column: contribution value between ad-
jacent triangles. Second column: contribution applied
to textures. Last column: result without blending, result
of blending in Tc, result of blending in all triangles.

Note that, in our implementation, the level in the multi-
resolution TAM is chosen according to the fragment
depth.

4 RESULTS
We present different results obtained with our model
and discuss about performance, temporal and spatial

Journal of WSCG

Volume 21, 2013 102 ISSN 1213-6972

foreach triangle t in {c,α,β ,γ} do
Compute Tone according to −→Nt and −→FL;
Compute Colort determined by Ht .st and Tone;

end
FinalColor← ∑(Colort ×Ht . f)/∑(Ht . f) ;

Algorithm 3: Compute the fragment color

A

B
C

A

B C

A

B
C

LIGHT POSITION

Phong ShadingGouraud shading

LIGHT POSITION

A

C
B

Front viewpoint

Up viewpoint

Figure 9: Example of texture number determining per
fragment with different lighting techniques

coherence during scene animations.

Figure 10 presents an overview of possible results us-
ing our hatching model. The hatching parameters Ht

i of
each vertex Vi can be globally modified on the fly, ac-
cording to a matrix that provides the three basic trans-
formations. Indeed, considering the (

−→T ,
−→B ,
−→N) coor-

dinates system, we can shift Ht
i (s, t) by adding a value

in [0;1] corresponding to a translation on −→T and/or −→B
axis. We can scale each Ht

i (s, t) using any scale value
that modifies the texture repetition (see figure 10 second
line). We can also modify Ht

i (s, t) by making a rotation
on the −→N axis to change the global texture orientation
(see figure 10 first line and figure 14).

Our model provides a coherent lighting that follows
the light and, as one can see on figure 11, reflects the
fineness of the mesh.
Otherwise, our model gives the ability to represent
different materials using different TAMs (see figure
12). TAMs can be used in addition to color materials
(see figure 13 and figure 10).

Considering the performance aspect, our model is real
time even for detailed geometry. Figure 15 illustrates
our implementation performance expressed in number
of frame per second considering different models. As
one can see, for a 3D object composed by more than
500 000 triangles, our model produces renderings in 30
frames per second (NVIDIA Quadro FX 3800). As a
comparison, we provide results both for our hatching
model and for a basic fragment lighting model: a Phong
shading. Note that, for both of them, we send the same
geometry to the GPU including adjacency data. We ob-
tain a ratio around 50% between these two renderings:

Figure 10: Results on 3D face model showing all dif-
ferent effects. First line: texture rotation along N axis
for each triangle. Second line: different scale values
are used. Third line: renderings using different light
positions. Last line: model rotation for a fixed light.

Figure 11: Results on the hand model with different
light positions. Note that geometric details are always
visible.

Journal of WSCG

Volume 21, 2013 103 ISSN 1213-6972

Figure 12: Results on the Stanford dragon model with
different light positions and TAMs representing differ-
ent materials.

Figure 13: Results on a chair model with different light
positions and TAMs + colorization representing distinct
materials. First column shows results without adja-
cency blending.

Figure 14: Results on the Stanford bunny model with
different texture orientations. On the left, strokes are
oriented toward the light. On the right, strokes are tan-
gent to the light direction.

for a given geometry, our hatching rendering is twice
slower than the Phong shading.

Concerning the spatial and temporal coherence of our
model, a video showing our real time results is avail-
able at the following url:
http://www.ai.univ-paris8.fr/~suarez

We can notice that, between two consecutive frames,
when lighting changes, variation of the selected TAM
remains progressive while highlighting the object ge-
ometry.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

F
P
S

K triangles

Hatching
Phong

Figure 15: Graph showing performance of our render-
ing pipeline on different 3D models at a 1024x1024 ren-
dering resolution (the used GPU is a Nvidia Quadro FX
3800). Results are expressed in FPS according to the
number of triangles.

5 CONCLUSION
We have presented a model to produce hatching in 3D
scene taking into account the brightness due to light-
ing, the orientation linked to the object geometry and
the materials related to its texture. Our implementa-
tion is fully GPU and provides real time hatching on
large scenes. Our model can be applied to any 3D mod-
els where the topology is constant. It provides hatch-
ing on static 3D models, animated 3D models and sup-
ports deformations. Triangle adjacency can be easily
deduced from any 3D models at the loading step by in-
dexing the model vertices. Moreover, no modeling en-
gine modifications are needed. The model is also spa-
cially and temporaly coherent since it gives continuous
hatching during object animations and/or light displace-
ments avoiding popping effects.

As future work, it will be interesting to have the abil-
ity to produce C1-continuous strokes through adjacent
faces. A procedural generation of TAMs constitutes an
interesting way to adress this kind of problem. More-
over, the continuous aspect will be obtained automat-
ically and dynamically without grayscale strokes. We
also aim to manage multiple light sources in a sin-
gle rendering pass by choosing a way that changes the
hatching orientations (not simply blend them) accord-
ing to these multiple sources. Finally, we plan to inte-
grate drop and/or soft shadows and self-shadowing cal-
culations to the model and then produce hatchings by
disrupting orientations of faces affected by such shades.

6 REFERENCES
[Coc06] L. Coconu, O. Deussen, and H.-C. Hege.

“Real-time pen-and-ink illustration of land-
scapes”. In: Proceedings of the 4th inter-
national symposium on Non-photorealistic
animation and rendering, pp. 27–35, ACM,
New York, NY, USA, 2006.

Journal of WSCG

Volume 21, 2013 104 ISSN 1213-6972

[Deu00] O. Deussen and T. Strothotte. “Computer-
generated pen-and-ink illustration of trees”.
In: Proceedings of the 27th annual confer-
ence on Computer graphics and interactive
techniques, pp. 13–18, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA,
2000.

[Hae90] P. Haeberli. “Paint by numbers: abstract im-
age representations”. In: Proceedings of the
17th annual conference on Computer graph-
ics and interactive techniques, pp. 207–214,
ACM, New York, NY, USA, 1990.

[Her00] A. Hertzmann and D. Zorin. “Illustrating
smooth surfaces”. In: Proceedings of the
27th annual conference on Computer graph-
ics and interactive techniques, pp. 517–526,
ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 2000.

[Kap00] M. Kaplan, B. Gooch, and E. Cohen. “In-
teractive artistic rendering”. In: Proceed-
ings of the 1st international symposium on
Non-photorealistic animation and rendering,
pp. 67–74, ACM, New York, NY, USA, 2000.

[Lak00] A. Lake, C. Marshall, M. Harris, and
M. Blackstein. “Stylized rendering tech-
niques for scalable real-time 3D animation”.
In: Proceedings of the 1st international sym-
posium on Non-photorealistic animation and
rendering, pp. 13–20, ACM, New York, NY,
USA, 2000.

[Pra01] E. Praun, H. Hoppe, M. Webb, and A. Finkel-
stein. “Real-time hatching”. In: Proceedings
of the 28th annual conference on Computer
graphics and interactive techniques, pp. 581–
586, ACM, New York, NY, USA, 2001.

[Sai90] T. Saito and T. Takahashi. “Comprehensible
rendering of 3-D shapes”. In: Proceedings
of the 17th annual conference on Computer
graphics and interactive techniques, pp. 197–
206, ACM, New York, NY, USA, 1990.

[Sal94] M. P. Salisbury, S. E. Anderson, R. Barzel,
and D. H. Salesin. “Interactive pen-and-ink
illustration”. In: Proceedings of the 21st an-
nual conference on Computer graphics and
interactive techniques, pp. 101–108, ACM,
New York, NY, USA, 1994.

[Sal97] M. P. Salisbury, M. T. Wong, J. F. Hughes,
and D. H. Salesin. “Orientable textures for
image-based pen-and-ink illustration”. In:
Proceedings of the 24th annual conference
on Computer graphics and interactive tech-
niques, pp. 401–406, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA,
1997.

[Web02] M. Webb, E. Praun, A. Finkelstein, and
H. Hoppe. “Fine tone control in hardware
hatching”. In: Proceedings of the 2nd in-
ternational symposium on Non-photorealistic
animation and rendering, pp. 53–59, ACM,
New York, NY, USA, 2002.

[Win96] G. Winkenbach and D. H. Salesin. “Render-
ing parametric surfaces in pen and ink”. In:
Proceedings of the 23rd annual conference
on Computer graphics and interactive tech-
niques, pp. 469–476, ACM, New York, NY,
USA, 1996.

Journal of WSCG

Volume 21, 2013 105 ISSN 1213-6972

Journal of WSCG

Volume 21, 2013 106 ISSN 1213-6972

	!_2013-WSCG-Journal.pdf
	A19-full.pdf
	A37-full.pdf
	Introduction
	Definitions and Notations
	Contacts and the Boundary of the Forbidden Space

	Rotating the Robot
	Parameterizing Contact Surfaces
	Vertex-Edge Contact
	Vertex-Edge Angle Range Analysis

	Edge-Vertex Contact
	Edge-Vertex Angle Range Analysis

	Vertex-Vertex and Edge-Edge Contacts
	Vertex-Vertex Contact
	Edge-Edge Contact

	Summary of the Parameterization

	Differential Geometry of Contact Surfaces
	Conclusion
	Acknowledgments
	REFERENCES

	A53-full.pdf
	A71-full.pdf
	A89-full.pdf
	1. INTRODUCTION
	2. THEORETICAL BACKGROUND
	3. ADDING SPATIAL INFORMATION BY COMBINING CLASSIFIERS
	4. EXPERIMENTS
	Table 1. Comparison classification results for 15 categories with existent works.
	Table 2. Experimental results for 8 scene categories dataset.
	Table 3. Experimental results for 8 class sports event dataset.
	Table 4. Experimental results for 67 class indoor scene categories dataset.
	5. CONCLUSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES

	B37-full.pdf
	B73-full.pdf
	B79-full.pdf
	B83-full.pdf
	B89-full.pdf
	1 Introduction
	2 Related Work
	3 Conceptual Overview
	4 Irregular Clip-Surfaces
	4.1 Parameterization
	4.2 Offset Maps
	4.3 Pixel-precise Clipping
	4.4 Fragment Shader Implementation
	4.5 Multiple Clip-Surfaces

	5 Cap Surfaces
	5.1 Rendering of Cap Surfaces
	5.2 Volumetric Depth Sprites
	5.3 Volumetric Parity Test
	5.4 Fragment Shader Implementation

	6 Results & Discussion
	6.1 Application Examples
	6.2 Rendering Performance
	6.3 Limitations & Improvements

	7 Conclusions

	B97-full.pdf
	E31-full.pdf
	E37-full.pdf
	E47-full.pdf
	E59-full.pdf
	F07-full.pdf
	F43-full.pdf
	F97-full.pdf

