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ABSTRACT
We propose an approach to simulating and rendering physically based fluid effects in a VFX production envi-
ronment using a client/server architecture that is practical for distributed simulation resources and that can be
seamlessly integrated into commercial 3D animation packages. The fluid simulation implements smoothed parti-
cle hydrodynamics (SPH). We extend the concept of surface particles by introducing blind particles that facilitate
efficient direct raytracing of isosurfaces. We evaluate the performance of our approach with local simulation on
CPUs and GPUs and distributed GPU simulation. We demonstrate the integration into the animation package
3ds Max and the VRay raytracer. The usability of the VFX production pipeline is assessed by a user study with
VFX professionals and animation experts.
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1 INTRODUCTION

An important, however expensive and time-consuming
part in CGI/VFX production is physically based
simulation. There are many different and competing
approaches, with respective advantages and disadvan-
tages. In addition, to experiment with new VFX ideas,
the integration of research results into VFX pipelines
of production houses is a continuing challenge because
the production pipeline adds requirements to the
system that may turn good theory into complicated
implementation. Many leading VFX production houses
like ILM or CA Scanline use in-house solutions for
physical simulation. A few specialized software ven-
dors such as Next Limit Technologies offer solutions
like Realflow [1] that couple to established animation
packages. Recently, software packages that started
as in-house solutions have been emerging on the
market, like the fluid simulation software Naiad from
Autodesk.

All current solutions, including the above, are either
directly integrated into the animation package as ex-
tensions like Glu3D [2] from 3DAliens for Autodesk’s
3ds Max, where the simulation can be run directly in the
base package, or the simulation is run in an external ap-
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plication like Realflow and the results are then imported
into the animation package as baked simulation data. A
good example of a typical pipeline integration in a VFX
environment is described by Lagergren [3], whose fluid
simulation with a GPU implementation targets the pro-
duction renderer in the SideFx Houdini system.

Here, we propose a client/server architecture for dis-
tributed VFX simulation that can be seamlessly used
within an existing VFX pipeline. Similar to other sys-
tem papers like the one by Parker et al. [4], we describe
the design choices that have to be made for the inte-
gration of recent research advances into a production
pipeline.

The proposed design pattern of this paper is applicable
to many areas in the field of simulation. We have cho-
sen fluid simulation as a concrete example because of
its high relevance for special effects and since it also
affects the rendering aspect of the production pipeline,
thus demonstrating how we can address the integration
of software components in all relevant stages of the
pipeline.

We have designed a client/server fluid simulation sys-
tem that allows artists to interactively setup simulations
and change parameters inside their familiar animation
package while the system executes the numerical calcu-
lation for the simulation on a remote system with spe-
cialized hardware.

We have chosen a particle-based method for fluid simu-
lation because all major 3D packages have built-in par-
ticle systems that can handle simulated point data. The
coupling to existing particle systems has the advantage
that a variety of tools are already available to further
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use of the simulation data, for example, for triggering
the creation of splash particles.

Our second contribution is an enhanced direct raytrac-
ing technique for isosurfaces that extends the concept
of surface particles by introducing blind particles. This
reduces the amount of particles to be evaluated for ren-
dering and the network bandwidth required for data ex-
change, which is the main bottleneck in client/server
systems. As a side effect, this also speeds up direct
raytracing methods since the rays can skip empty space
inside the fluid.

As a case study, we have implemented our approach
into the 3D package 3ds Max and used external com-
puting capacity based on NVidia GPUs for the server
side. With a user study with VFX professionals, we
have evaluated the workflow in a production environ-
ment.

2 PHYSICAL BACKGROUND
For this paper, we use smoothed particle hydrodynam-
ics (SPH) [5] for fluid simulation. A good overview of
particle-based simulation methods can be found else-
where [6].

Our implementation uses the kernel functions for den-
sity, viscosity, and pressure from Mueller et al. [7]. It
employs constant particle size, but adaptive methods
could be included as well [8, 9].

For tension forces, we apply the approach by Becker
and Teschner [10] using cohesion forces. Integration
of the dynamics of the particle system employs explicit
first-order Euler integration because it delivers suffi-
cient numerical quality at high computational speed.
However, higher-order schemes could be easily used
instead, if necessary. To achieve incompressibility,
we use predictive-corrective incompressible SPH
(PCISPH) [11].

3 SYSTEM ARCHITECTURE
Our focus is good usability of efficient fluid simula-
tion in a VFX environment. To overcome the computa-
tional bottleneck of simulating a huge amount of parti-
cles on the workstation itself, we outsource the comput-
ing power to an external GPU server. Still, the results
of the simulation steps should be visible as soon as pos-
sible and steering the simulation parameters should re-
side in the 3D scene in the main package.

To achieve this level of interactivity, a client/server ar-
chitecture is used; see Figure 1. The client resides in the
commercial 3D package and sends simulation param-
eters to the server while requesting simulation results
for specific frames. Decoupling of simulation compu-
tation and scene management has the benefit that sev-
eral users can share specialized hardware. Recently,

Figure 1: Architecture overview: outsourcing simulation
tasks to remote hosts.

GPU blades like the Tesla workstations became afford-
able for smaller studios. Outsourcing simulation work
to these specialized servers is a logical consequence.

The server runs on an external hardware and identifies
the user and scene. The user can change parameters for
the scene in the 3D package and then start a simulation
for a specific frame range. The server will run the sim-
ulation in a background thread and store the results in
a local disk cache. In the host application, the simula-
tion is an operator in the particle simulation framework.
The operator holds the simulation parameters and the
current state of the particles as input parameters for the
simulation and receives the particles over the network.
We compute the SPH-related forces in the simulation
server and allow the host application to add forces from
the integrated particle system and then do one integra-
tion step for all forces. This opens the way for a variety
of effects. With this seamless integration, for exam-
ple, the interaction of the SPH simulation with forces
coming from an inverse kinematics (IK) skeleton that is
driven with motion capture data is possible.

In our current implementation, we integrated the client
into 3ds Max. However, other host systems such as Au-
todesk Maya or SideFx Houdini would work equally
well. For maximum flexibility, we integrated the client
into the Particle Flow particle system as an operator us-
ing the Particle Flow SDK.

The communication between the client and the server
is implemented via remote procedure calls (RPCs). The
main problem in implementing a remote SPH fluid sim-
ulation is the huge amount of data to be transferred. A
typical SPH-VFX shot uses several million SPH parti-
cles. The simulation data has to be stored at least for ev-
ery frame. If the host system needs subframe precision
to calculate secondary effects like e.g. additional spray
particles, the data has to be saved even more frequently.
This computed data has to be stored and streamed over
the network. Hence, hard disk space and bandwidth
rapidly become the critical factors and need careful de-
cision making regarding file format and message proto-
col.

As network message protocol, we chose the msg-
pack [12] protocol, which is a bandwidth-efficient
protocol for binary data for which implementations
in C++ and Python exist. In addition, it allows
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Figure 2: Remote procedure call architecture.

compressed communication with little overhead. The
integration with 3ds Max was done using its event-
driven particle system Particle Flow. Particle Flow
can display all particle emitters and operators in a
node-based editor visualizing a graph of nodes. Several
data channels can flow through this graph. With the
Particle Flow SDK, new channels and operators can be
added to the system using C++. Figure 2 illustrates the
remote procedure call architecture.

For our implementation, we added a new operator that
holds the msgpack-rpc C++ client. This operator then
sends remote procedure calls to the server. The client
can request the particle count for a specific time. Our
system exchanges position, velocity, and color for each
particle. The color value will be written to the color
channel in 3ds Max. We use it to send the particle type
and particle density. We use float32 values for each
array element. This leads to memory requirements of
(9× 4) = 36 bytes per particle, which comes to about
3.6 MB per 100 k particles. This can be compressed to
about 60 percent using zip compression. The operator
unpacks the data and then sets both the particle count
of the current Particle Flow graph and the positions and
information about the particle type.

All performance-critical modules of the simulation
were written as parallel code in OpenCL to run on both
multi-CPU and GPU setups.

4 SIMULATION
The Particle Flow framework employs an event-driven
model, based on the concept of events and operators.
Operators describe and modify particle properties such
as speed and direction over a period of time. Individual
operators can be combined into groups called events.
Each operator provides a set of parameters that define
particle behaviors during the event. Particle Flow con-
tinuously evaluates each operator and updates the parti-
cle system accordingly. Particles can be sent from event
to event using tests. Tests let you connect events to-
gether in series. A test can check for certain proper-
ties of the particles. Particles that pass the test move
on to the next event, while those that do not meet the
test criteria remain in the current event [13]. We im-
plemented the simulation code as an operator of Parti-
cle Flow. This decouples the SPH simulation from the

computation of other forces that may act upon the par-
ticles.

Particle Flow has its own integration routine. To avoid
‘double’ integration a Particle Flow node can overwrite
the default integrator with a custom implementation.
By this, we can integrate the particles in our operator
and make sure that boundary conditions and collisions
are handled properly. By reading out the acceleration
channel we can use the Particle Flow forces to affect the
simulation. The acceleration due to the Particle Flow
forces changes the velocity on the client side while the
SPH acceleration is added on the server. The mass is
defined as constant for all particles; therefore, we can
simply add the accelerations:

atotal = aSPH +aParticleFlow (1)

We adopted the PCI SPH technique [11] with strate-
gies for GPU implementation according to Goswami et
al. [14]. PCI SPH offers good time/visual quality ratio,
high robustness, and easy implementation. However,
the choice of simulation algorithm should not affect
the system architecture. One of the benefits of our ap-
proach is that maintaining and changing the simulation
implementation is decoupled and transparent: it can be
done without changes to the local software setup of the
client workstations as long as the parameter set stays
the same.

4.1 Neighbor Search
SPH simulation is well suited for a parallel imple-
mentation since the particles can easily be distributed
to the computing units. Efficient neighbor search for
each particle is the challenging part for parallel imple-
mentations. Our decision for an acceleration structure
was based on the requirement that we need a memory-
efficient structure that can run on the GPU. We also
wanted a concept that can be extended to a multi-GPU
scenario similar to the multi-GPU work by Valdez-
Balderas et al. [15].

Ihmsen et al. [16] compared different neighbor search
data structures for multi-core architectures with shared
memory and found that using a regular grid for neigh-
borhood search with zCurve sorting to be the fastest
solution for parallel implementations. For sorting the
particles into the cells, we use the algorithm described
by Goswami et al. [14]. Each particle is assigned a sin-
gle integer hash value based on its cell coordinates. For
better memory caching, a space-filling curve number-
ing is employed instead of a simple hash value. After
a key/value sort of this array and the particle indexes,
all particles that belong to the same cell can be found
in a continuous order. By executing binary search in
the hash array, the particles for a particular cell can be
found.
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4.2 Collision Detection
Collision geometry is sent to the server with a RPC
call. We send the polygon positions and a global trans-
form matrix of the object for each frame. We generate
a hash value for the polygons of each object based on
the vertex positions. The polygons are cached on the
simulation server and are only updated if the hash value
changes. To handle collisions we intersect the particle
trajectories with the triangles in both the PCI predic-
tion step and the final integration step. If a collision
is found, we correct the position of the particle to the
intersection point and set its velocity to zero. The addi-
tional pressure correction iterations of the PCI method
propagate the pressure back into the fluid and lead to vi-
sually satisfying results, according to our experiences.
Therefore, more sophisticated boundary handling meth-
ods are not needed for our use cases.

4.3 Blind Particles
To reduce the amount of data required for rendering, we
introduce the use of blind particles. Only particles near
the surface contribute to the surface generation and the
rendering process. The particles inside the volume are
not of any interest for visualization. This observation
was used before to accelerate raytracing. We also ex-
ploit this fact for optimized disk caching and reduction
of bandwidth requirements. Recent works [17, 14, 18]
identify the surface particles from the simulation and
only use those for surface generation. [18] use surface
particles for surface generation in a tesselation process
based on Marching Cubes, but not for directly raytrac-
ing the surface. [18] store the surface information on
the grid that they use for their Marching Cubes algo-
rithm while we are tagging the underlying particles with
the particle type property directly.

However, identifying only surface particles is not suffi-
cient when used with a production renderer. Figure 3
(a) illustrates this problem. In this example, the in-
ner red surface only emerges because the inner particles
were deleted. This problem arises for commercial ray-
tracers, because the core components of the raytracing
algorithm cannot be changed by plugins. Therefore, we
cannot decide if the surface is valid or not by the algo-
rithm, especially if camera rays that start inside the fluid
should be possible. A ray that enters a fluid and passes

Figure 3: Surface generation without and with blind particles.

Figure 4: SPH particles color-coded by particle type. Black:
particles to be omitted, white: blind particles, colored: surface
particles color-coded by pressure.

the surface particles will generate a surface on the in-
side of the boundary particle hull. For the ray, it could
also be a small splash particle or a thin fluid stream.

To solve this problem, we introduce blind particles.
We not only identify the surface particles but also a
thin layer of particles tagged as ‘blind’ around them.
See Figure 3 (b). Blind particles prevent the gener-
ation of the inner surface. The rest of the particles
is only relevant during simulation. Omitting particles
would normally create new surfaces inside the fluid
where they are missing. The blind particles will tell the
surface generation algorithm to not generate a surface
where their field value would normally create an iso-
surface. For identifying the surface particles, we adopt
the method described by Goswami et al. [14]. A blind
particle is tagged as blind if at least one neighbor in a
threshold distance was tagged as a boundary particle.
Figure 4 shows a typical scenario with blind particles,
surface particles, and particles that are to be omitted.

4.4 Implementation Details

Similar to Goswami et al. [14], we use the zCurve ap-
proach for parallel implementation on the GPU. We
temporarily store the neighborhood of each particle in
memory for each timestep to reuse the information in
the prediction/correction loop.

For the simulation code, we chose OpenCL over CUDA
because of the ability to run it efficiently on CPUs as
well. For the host code, we chose the Python OpenCL
integration [19]. We experienced that kernels run at the
same speed independent of whether host code is written
in C++ or Python.

The advantage of a Python/OpenCL-based framework
is optimal portability. The code ran on all combina-
tions of Windows/Linux and GPU/CPU with only lit-
tle modifications. However, some optimizations that
would be possible for GPU only code were sacrificed
for CPU compatibility. For example, the use of shared
local memory was avoided in the kernel code.
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Figure 5: BVH for motion-blurred isosurface.

5 RENDERING

Our contribution for the rendering of fluid surfaces is
the integration of current fluid rendering algorithms in a
VFX pipeline. Often, rendering is a step separate from
animation and simulation. To adapt to this separation
we designed the rendering routines as a geometry plu-
gin for 3ds Max from Autodesk and the raytracer VRay
from Chaosgroup. This renderer is available for all ma-
jor 3D packages and is widely used in VFX companies
in Europe. In general, there are two ways that are used
to render fluid surfaces. One approach is to generate a
triangle mesh that is then rendered with the standard tri-
angle pipeline. Akinci et al. [18] proposed an efficient
parallel implementation for the surface reconstruction.
The other approach is direct raytracing of the surface
where the intersection with the surface is found for ev-
ery ray [20]. [21] accelerated direct rendering of fluid
surfaces on the GPU by sampling the particle values to
a perspective grid. We implemented a surface recon-
struction algorithm and a direct raytracing routine and
compare both solutions.

In the preparation phase, we fill the particles into a
bounding volume hierarchy (BVH), taking the radius of
each particle into account. Our implementation differs
from other current implementations [22] regarding that
if motion blur is required, we use both the position at
the beginning of the motion blur interval and at the end
to define the leaf nodes. Each particle carries velocity
information; the ray request from the raytracing system
has time information. With this information, each sam-
ple can calculate the exact positions of the particles in
the intersected BVH leaves that were generated for the
full frame length. Figure 5 shows how the BVH is used
for rendering motion-blurred isosurfaces.

As a first step, we find the intersected leaf nodes. We
then sort those nodes by their intersection point along
the ray. We then march along the ray from the first
intersection point into bounding boxes and evaluate a
level-set function for the particles in the leaf node. We
implemented both the simple Blinn blob and the surface
function according to Zhu and Bridson [23]. If the sign
of the result changes from one evaluation to the next,

Figure 6: Rendering of a particle cube where inner particles
were omitted: (left) without blind particles and (right) with
blind particles.

then the surface lies between those marching steps. The
accurate position is found via binary search.

We omit the intersection if most particles involved in
the calculation of the level set are flagged as blind par-
ticles. This robustly handles all secondary rays like
shadow rays, reflection/refraction rays, and rays for in-
direct illumination. Also rays that start inside the fluid
are handled correctly. Figure 6 compares rendering
with and without blind particles.

Direct raytracing is very fast for opaque materials. For
ray marching near the boundaries, only outer leaf nodes
of the BVH have to be considered and only a few par-
ticles add to the level-set function. Once the first inter-
section is found, the function is finished and may return.
The slightly longer raytracing times compared to inter-
section with polygons are compensated with the much
faster preparation times per frame, since no march-
ing cubes [24] or similar meshing phases are needed
for explicit isosurface extraction. Especially in cases
where huge water masses are simulated, but the cam-
era captures just a fraction of them, the direct render-
ing method can speed up rendering substantially. An
important advantage of the direct raytracing approach
is the handling of 3D motion blur. Mesh-based ren-
dering methods have to calculate multiple meshes per
frame to obtain clean motion blur in order to compen-
sate for changes in the mesh topology. Modern ray-
tracers can render motion blur based on velocity infor-
mation per vertex, but this approach can not consider
topology changes e.g. merging of fluid drops. For direct
raytracing, it does not matter if the topology changes in-
side the time frame of the motion blur. In Figure 5, the
isosurface for a single point in time is drawn as seen by
a specific ray sample. For each sample, we calculate
the exact position of the surfaces at the requested point
in time.

However, the advantage of faster rendering times is lost
for transparent materials like water. Here, ray marching
has to continue through the material. Also reflections
inside the fluid add to the rendering times. Here, the
caching strategies VRay provides for polygons outper-
form direct raytracing. To allow for polygon-based ray-
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Scene Dambreak 20k Dambreak 125k Dambreak 1.25M
Stepsize dt 0.01s 0.01s 0.01s

Local Intel i7 0h:01m:27s 0h:13m:29s 2h:54m:08s
Local NVidia GTX 570M 0h:00m:48s 0h:05m:06s 1h:09m:28s
Local NVidia GTX 680 0h:00m:19s 0h:02m:16s 0h:29m:34s
Server/client GTX 680 0h:00m:20s 0h:02m:19s 0h:30m:17s

Table 1: Simulation time for 100 frames.

Figure 7: Different time steps of our dambreak simulation.

tracing we also implemented a multi-threaded marching
cubes algorithm to create polygons.

6 RESULTS
6.1 Performance Results
We provide performance numbers for the simulation
and the rendering components of our system. All tests
use a dambreak simulation designed by us. Figure 7
illustrates different time steps of the simulation; also
see the accompanying video. We use different volume
quantities for the SPH simulation keeping the kernel ra-
dius at 4 cm and time step at 0.01 s (with 20 k, 125 k, or
1.25 M particles). The test environment was a mobile
workstation equipped with an NVidia GTX 570 M GPU
and Intel I7 CPU (2.0 GHz) and a desktop workstation
with an NVidia GTX 680. In the client/server con-
figuration, the mobile workstation was the client with
3ds Max and the desktop workstation was the simula-
tion server. The network was a 1 GBit Ethernet connec-
tion.

Table 1 documents the simulation times for the differ-
ent hardware platforms and SPH quantities. The sim-
ulation times include transfer of the particle data be-
tween client and server for each frame and, therefore,
may be slower than times presented in other SPH real-
time papers. However, the difference between running
the server on the same machine (“local" in Table 1) and
running over the network was only about 2 percent. The
advantage of having access from the mobile worksta-
tion to the computing power of the GTX 680 card in

Scene Dambreak Dambreak
20 k 200 k

Marching Cubes opaque 0:36 2:46
transp. 0:39 2:27

Direct raytracing opaque 0:18 2:01
transp. 0:55 6:18

Direct raytracing opaque 0:18 1:57
blind transp. 0:55 4:43

Table 2: Rendering times (min:sec).

the desktop workstation, which resulted in about twice
the speed, by far compensated the communication over-
head. Especially, time-critical productions may benefit
from the flexible use of external compute resources.
Table 2 shows the rendering times on the mobile work-
station for the small and medium-sized dambreak sim-
ulations. The rendering times were recorded for frame
40 of the simulation, where a large number of active
particles are present. As shown in Figure 8, there are
other time steps of the simulation that have much fewer
active particles. In those cases, savings from direct ray-
tracing are even more pronounced than for frame 40 of
the animation.
Finally, Figure 9 compares rendering times between
the blind particle method and the conventional method.
The direct raytracing implementation is especially help-
ful in the setup phase for low-resolution test rendering.
Especially for small cropped render tests without an-
tialiasing, direct raytracing outperforms methods that
need preparation steps with meshing. This allows fast
iterations in the lighting phase.
Longer preparation times for polygon generation pay
off in more complex scenes with multiple ray bounces.
For each ray sample, the scalar field of the isosurface
has to be evaluated multiple times for the binary search
in order to find the intersection point. This is a costly
operation. For small resolutions without antialiasing
and only single ray bounces, this is still faster than sur-
face reconstruction. Antialiasing schemes dramatically
increase the rendering time for direct raytracing while
only moderately increase the rendering time for poly-
gons. This can be seen in Table 2 for frame 40 of our
dambreak simulation. All tests were performed with
an image resolution of 1280×720 pixel and fixed-rate
antialiasing. Our conclusion is that direct raytracing
should be used in the setup phase, when small resolu-
tion test renders are made or in situations where only
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Figure 8: Particle count of active particles (boundary and
blind particles) of the 200 k dambreak simulation.
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Figure 9: Rendering times for the blind particle and conven-
tional methods for the 200 k dambreak simulation.

portions of the simulation volume are seen by the cam-
era.

Our geometry plugin supports all VRay render ele-
ments. Being able to deliver all requested render ele-
ment passes is an important factor for successful inte-
gration in today’s production pipelines.

6.2 User Study
We assessed the usability and effectiveness of our sys-
tem conducting a user study with VFX professionals.
The study is mainly of qualitative nature, accompanied
by quantitative and qualitative questionnaires. In addi-
tion to gathering information to improve the usability of
our system (as part of a formative process), we wanted
to test two hypotheses: “SPH solver integration into
Particle Flow improves the workflow in 3ds Max” (Hy-
pothesis 1) and “Direct raytracing is suitable for VFX
production” (Hypothesis 2).

Our study was designed to test realistic work environ-
ments and tasks. Therefore, we recruited specialists for
fluid-related VFX. Due to the highly specialized user
group, the number of participants was small (three).
Therefore, we have chosen a qualitative user study de-
sign: we used the think-aloud method [25] in addi-
tion to the questionnaires to obtain maximum feedback
from each individual. According to Nielsen [26], three
expert users can be sufficient for a think-aloud study.

A screen and audio recording was later transcribed
into text and selected comments were then categorized
into the phases ‘initial setup’, ‘tweaking simulation’,
‘tweaking surfacing’, ‘tweaking render settings’, and
placed in a review document.

All participants had more than 3 years of professional
experience with 3D software and spent more than 6
hours per day working with 3ds Max. All participants
were working on fluid-related VFX projects in their
jobs at the time of the user study. Since VFX profes-
sionals with a fluid background and 3ds Max experi-
ence are scattered over the world, the user study was
performed remotely with screen sharing sessions. The
participants temporarily installed our plugin on their
workstations. After an introductory session of about
30 minutes, we asked them to design a dambreak-like
animation. The task was easily explained and can be
solved in the short amount of time available. As an ad-
ditional requirement, they were asked to add additional
forces from 3ds Max to the simulation like e.g. a vortex
to explore the coupling with 3ds Max forces. The par-
ticipants were instructed to think aloud while they work
to protocol their first impressions.

After the test, we asked the participants to fill in an
online survey with questions about the usability of the
system. Included in these were questions about differ-
ent areas of the system like “Integrating fluid solver in
Particle Flow allows me to achieve a greater variety of
effects than a standalone solver.” and the 10 standard
System Usability Scale (SUS) questions [27]. The du-
ration of the test was between 30 and 45 minutes.

All participants agreed that the overall workflow is bet-
ter if the fluid simulation is integrated in the 3D content
creation software in contrast to standalone fluid simu-
lation applications. The usability was also rated very
good in the SUS questionnaire. This is attributable to
the fact that the solver blended into the interface for
which they were experts. In particular, all users ap-
preciated the flexibility that the integration into Particle
Flow offered. We also asked about the subjective opin-
ion on the visual quality of direct raytracing of fluid
blobs in contrast to meshing approaches. All agreed
that direct raytracing offers superior image quality; no
participant considered it slow. All would consider it for
their next project. The detailed questions and results of
the questionnaires can be found in the supplementary
material.

The participants were also asked for unstructured feed-
back. Some of the representative feedback includes:
“The integration of an SPH solver into a particle sys-
tem is basically interesting. It often happens in daily
work that you have to add small fluid simulations on
top of existing particle simulations, where you don’t
want to setup a big system. For example liquid spurts in
battle scenes, where a complete fluid simulation would

Journal of WSCG

Volume 21, 2013 169 ISSN 1213-6972



be too much, but still small effects are needed.” Or:
“This should actually in theory kill the performance be-
cause we are raytracing into an isosurface and that is
something you shouldn’t do. Sure enough it is going
slightly slower but testament to the quality of the mesh
it’s intersecting – even at the low settings – it is really
not.” Or: “It is really a dream to be able actually stop
a render this quickly and go back to your settings, and
change them, tweak them, press f9 to re-render and it
is there. . . . Seriously, on a daily basis I have to wait
15 minutes between stopping a render and releasing all
memory possible from the computer it takes minutes
and then I make the one small change like ‘I need two
more of this’ and press f9 and wait 10 minutes before
the fist bucket is on screen.”

In summary, the user study provides a preliminary in-
dication that our approach provides a useful integration
of SPH simulation in the VFX workflow (Hypothesis
1) and that direct raytracing can be suitable for certain
aspects of VFX production (Hypothesis 2).

7 CONCLUSION AND FUTURE
WORK

Our approach shows that external and distributed com-
puting resources can be integrated in the established 3D
workflow of VFX production companies seamlessly us-
ing commercial software packages allowing interactive
sessions. In our user study, we confirmed the good util-
ity of our approach for domain experts. We have pre-
sented an approach to reducing the memory footprint
of particle caches without visual difference. This is
especially important if the data has to be transferred
over network. The idea of blind particles is indepen-
dent from the simulation concept used and can be easily
integrated in existing pipelines with savings in both ren-
dering time and storage requirements. The performance
tests confirmed that the distributed simulation leads to
negligible communication overhead.

In future work, our implementation could be extended
to a multi-GPU system to be employed in scalable hard-
ware environments such as GPU clusters on the server
side. Our generic client/server architecture could be ex-
tended to other fields of physically based simulation.
Similarly, other commercial 3D packages could be in-
tegrated with our system.

8 ACKNOWLEDGMENTS
This work was partly supported by “Kooperatives Pro-
motionskolleg Digital Media” at Stuttgart Media Uni-
versity and the University of Stuttgart.

9 REFERENCES
[1] Next Limit. Realflow product website. http://

www.realflow.com.

[2] 3D Aliens. Glu3d product website. http://
3daliens.com/joomla.

[3] M. Lagergren. GPU accelerated SPH simulation
of fluids for VFX. Report LiU-ITN-TEK-A–
10/044–SE, Dept. Sci. Tech., Linköping Univer-
sity, 2010.

[4] E. G. Parker and J. F. O’Brien. Real-time defor-
mation and fracture in a game environment. In
Proc. ACM SIGGRAPH/Eurograph. Symp. Com-
put. Anim., pages 156–166, 2009.

[5] J. J. Monaghan. Smoothed particle hydrodynam-
ics. Ann. Rev. Astron. Astrophys., 30:543–574,
1992.

[6] B. Adams and M. Wicke. Meshless approxima-
tion methods and applications in physics based
modeling and animation. In Eurograph. 2009
Tutorials, pages 213–239, 2009.

[7] M. Mueller, D. Charypar, and M. Gross. Particle-
based fluid simulation for interactive applications.
In Proc. ACM SIGGRAPH/Eurograph. Symp.
Comput. Anim., pages 154–159, 2003.

[8] B. Adams, M. Pauly, R. Keiser, and L. J. Guibas.
Adaptively sampled particle fluids. ACM Trans.
Graph., 26(3):48, 2007.

[9] H. Yan, Z. Wang, J. He, Xi Chen, C. Wang, and
Q. Peng. Real-time fluid simulation with adaptive
SPH. Comput. Anim. Virt. Worlds, 20:417–426,
2009.

[10] M. Becker and M. Teschner. Weakly compress-
ible SPH for free surface flows. In Proc. ACM
SIGGRAPH/Eurograph. Symp. Comput. Anim.,
pages 209–217, 2007.

[11] B. Solenthaler and R. Pajarola. Predictive-
corrective incompressible SPH. ACM Trans.
Graph., 28(3):40:1–40:6, 2009.

[12] Furuhashi S. msgpack website. http://
msgpack.org.

[13] Autodesk. Autodesk 3ds Max userguide.
http://docs.autodesk.com/3DSMAX/
15/ENU/3ds-Max-Help/index.html.

[14] P. Goswami, P. Schlegel, B. Solenthaler, and
R. Pajarola. Interactive SPH simulation and
rendering on the GPU. In Proc. ACM SIG-
GRAPH/Eurograph. Symp. Comput. Anim., pages
55–64, 2010.

[15] D. Valdez-Balderas, J. M. Domínguez, B. D.
Rogers, and A. J. C. Crespo. Towards acceler-
ating smoothed particle hydrodynamics simula-
tions for free-surface flows on multi-GPU clus-
ters. J. Parallel Distrib. Comput, 2012. doi
10.1016/j.jpdc.2012.07.010.

[16] M. Ihmsen, N. Akinci, M. Becker, and
M. Teschner. A parallel SPH implementation

Journal of WSCG

Volume 21, 2013 170 ISSN 1213-6972



on multi-core CPUs. Comput. Graph. Forum,
30(1):99–112, 2011.

[17] Y. Zhang. Adaptive sampling and rendering of
fluids on the GPU. In Proc. Symp. Point-Based
Graph., pages 137–146, 2008.

[18] G. Akinci, M. Ihmsen, N. Akinci, and
M. Teschner. Parallel surface reconstruction for
particle-based fluids. Comput. Graph. Forum,
31(6):1797–1809, 2012.

[19] A. Kloeckner, N. Pinto, Y. Lee, B.C. Catanzaro,
P. Ivanov, and A. Fasih. PyCUDA: GPU run-time
code generation for high-performance computing.
CoRR, abs/0911.3456, 2009.

[20] J. C. Hart. Ray tracing implicit surfaces. ACM
SIGGRAPH 93 Course Notes: Design, Visualiza-
tion and Animation of Implicit Surfaces, pages
1–16, 1993.

[21] R. Fraedrich, S. Auer, and R. Westermann. Effi-
cient high-quality volume rendering of sph data.
IEEE Trans. Vis. Comput. Graph., 16(6):1533–
1540, 2010.

[22] O. Gourmel, A. Pajot, M. Paulin, L. Barthe, and
P. Poulin. Fitted BVH for fast raytracing of meta-
balls. Comput. Graph. Forum, 29(2):281–288,
2010.

[23] Y. Zhu and R. Bridson. Animating sand as a fluid.
ACM Trans. Graph., 24(3):965–972, 2005.

[24] W. E. Lorensen and H. E. Cline. Marching cubes:
A high resolution 3D surface construction algo-
rithm. Comput. Graph., 21(4):163–169, 1987.

[25] C. H. Lewis. Using the “Thinking Aloud" method
in cognitive interface design. Tech. report RC-
9265, IBM, 1982.

[26] J. Nielsen. Estimating the number of subjects
needed for a thinking aloud test. Intl. J. Human-
Comput. Stud., 41(3):385–397, 1994.

[27] J. Brooke. SUS: a quick and dirty usability scale.
In P. W. Jordan, B. Weerdmeester, A. Thomas,
and I. L. Mclelland, editors, Usability Evaluation
in Industry. Taylor and Francis, 1996.

Journal of WSCG

Volume 21, 2013 171 ISSN 1213-6972



 

Journal of WSCG

Volume 21, 2013 172 ISSN 1213-6972


	!_2013-WSCG-Journal.pdf
	A19-full.pdf
	A37-full.pdf
	Introduction
	Definitions and Notations
	Contacts and the Boundary of the Forbidden Space

	Rotating the Robot
	Parameterizing Contact Surfaces
	Vertex-Edge Contact
	Vertex-Edge Angle Range Analysis

	Edge-Vertex Contact
	Edge-Vertex Angle Range Analysis

	Vertex-Vertex and Edge-Edge Contacts
	Vertex-Vertex Contact
	Edge-Edge Contact

	Summary of the Parameterization

	Differential Geometry of Contact Surfaces
	Conclusion
	Acknowledgments
	REFERENCES

	A53-full.pdf
	A71-full.pdf
	A89-full.pdf
	1. INTRODUCTION
	2. THEORETICAL BACKGROUND
	3. ADDING SPATIAL   INFORMATION BY COMBINING CLASSIFIERS
	4. EXPERIMENTS
	Table 1. Comparison classification results for 15 categories with existent works.
	Table 2. Experimental results for 8 scene categories dataset.
	Table 3. Experimental results for 8 class sports event dataset.
	Table 4. Experimental results for 67 class indoor scene categories dataset.
	5. CONCLUSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES

	B37-full.pdf
	B73-full.pdf
	B79-full.pdf
	B83-full.pdf
	B89-full.pdf
	1 Introduction
	2 Related Work
	3 Conceptual Overview
	4 Irregular Clip-Surfaces
	4.1 Parameterization
	4.2 Offset Maps
	4.3 Pixel-precise Clipping
	4.4 Fragment Shader Implementation
	4.5 Multiple Clip-Surfaces

	5 Cap Surfaces
	5.1 Rendering of Cap Surfaces
	5.2 Volumetric Depth Sprites
	5.3 Volumetric Parity Test
	5.4 Fragment Shader Implementation

	6 Results & Discussion
	6.1 Application Examples
	6.2 Rendering Performance
	6.3 Limitations & Improvements

	7 Conclusions

	B97-full.pdf
	C29-full.pdf
	D05-full.pdf
	D11-full.pdf
	D17-full.pdf
	E02-full.pdf
	E19-full.pdf
	E31-full.pdf


