

Ročník 2012 Číslo V

Extended Comparison Study on Merging PCAP Files
V. Veselý

Department of Information Systems, Faculty of Information Technology, Brno University of Technology
Božetěchova 2, Brno

E-mail : ivesely@fit.vutbr.cz

Abstract:
Different formats of PCAP (Packet CAPtures) files are nowadays widely used for storing computer network
communications. This paper outlines information about PCAP formats with focus on packets precise timing and
order. In thjs paper we compare capabilities of different open-source tools for handling PCAP files and introduce
our own tool for merging multiple PCAPs. Finally, we evaluate the performance of the implemented tool and
compare it with existing implementations.

INTRODUCTION

Traffic monitoring is an essential task for network
administrators, ISPs or law enforcing agencies.
Unfortunately still no standard exists for packet traces
exchange. The most widely accepted PCAP formats
are LibPCAP, PCAP Next Generation and
Microsoft NetMon.
The computer communication is often load-balanced
and then available traffic captures come from
multiple monitoring probes. Because of that the
traffic from one host could be spread across different
PCAP files. We face a problem how to “put together”
captures correctly whenever we want to successfully
trace and reconstruct a particular traffic flow.
The structure of the paper is following. First we will
try to provide an overview of basic concepts, theory
and state of the art in the area of joining PCAP files.
In the next chapter we will discuss our contribution to
the topic – our own software solution called
PCAPMerger. Following section will show results of
validation/verification tests and comparison with
other tools. We will conclude this paper with final
remarks and we will briefly mention ideas for future
work.

STATE OF THE ART

In this section we will introduce relevant information
about different PCAP file’s formats. We will also
describe some tools for handling multiple PCAP files
– either to simply concatenate their content or to
merge their content (sort them according to
timestamp). And lastly we mention issue regarding
handling of timestamp information in PCAP files.

LibPCAP

LibPCAP format [1] is formerly defined as a part of
the library with the same name [2]. It is oldest but
predominant PCAP format, mostly because it is
default for applications like tcpdump or Wireshark.

It uses just one Global Header (GH) where general
information about traffic capture (namely little/big
endianess detector, the correction to UTC time,
snapshot length, data link type for all frames) is
stored. After follows frame layout which consists by
turns of Packet Header (PH) (including timestamps
and data sizes) and Packet Data (PD).
Typical structure of LibPCAP is depicted on Fig. 1.

Fig. 1: LibPCAP file structure and frame layout

Multiple extensions (e.g. nanoseconds precision
resolution) or vendor specific (e.g. Nokia, RedHat,
SuSE) variants of this format were introduced during
the years. Nevertheless basic version defined above is
the only one generally accepted by all applications.

PCAP Next Generation

PCAP Next Generation (PCAPng) format for storing
network communication never became more than
IETF draft and currently is maintained outside any
IETF working group [3].
A PCAPng file consists of multiple blocks sharing the
same common format. Blocks could be categorized
into four different groups according to rules of their
presence in file: Mandatory (at least one block must
be present), Optional (blocks may appear), Obsolete
(usage of blocks is depreciated) and Experimental
(usage is not yet firmly defined but these blocks
could be somehow helpful). Following blocks are the
most important for this paper:

� Section Header Block (SHB) – this is a

mandatory block. It defines the most important
parameters of PCAP file (length of section,
byte-order and options).

� Interface Description Block (IDB) – it is
mandatory and describes characteristics of
sniffing interface (link type, snapshot length, IP

address, MAC address, interface speed,
timestamp resolution options with time zone
information, applied traffic filters).

� Enhanced Packet Block (EPB) – it is optional
and contains single captured packet or its
portion (frame) with all relevant information
like interface ID, timestamp, captured length
and packet length, packet data, etc.

� Simple Packet Block (SPB) – it is optional and
contains single captured frame or its portion
(frame), with a minimal set of information about
it (just packet length and data).

PCAPng blocks form a tree structure. The physical
layout of each PCAP file consists of at least one
SHB, with one IDB and corresponding EPB and SPB
for packets sniffed on the interface. Typical PCAPng
file could have the same structure as it is depicted on
Fig. 2.

Fig. 2: Structure and layout of PCAPng blocks

Microsoft NetMon

The most complex and also the most advanced
features are offered by Microsoft NetMon (MS
NetMon) capture file format, currently version 2.3.
This format was introduced in Microsoft Network
Monitor (MNM) [4] traffic analyzing tool. A MNM
PCAP file is divided into sections storing the
following data:
� Frame Table – Simple list where each record

represents starting offset of captured frame.
� Frame Layout – Actual frames are stored here.

Each one of them starts with Frame Header
(FH) which consists of time offset, real and
stored frame size, raw frame data and additional
information.

� Process Info Table – When traffic capturing is
done on an end host then operating system could
prepend relevant information about a target or
source process of the frame. Such information
consists of application path, icon, unique
process identifier, source/destination port or
source/destination IP address.

� Comment Info – Any frame could have also
additional textual comments, which are stored in
this section.

� Extended Info – Since version 2.0 MS NetMon
is capable recording another time information.
Additional to time and delta offset provided by
NetMon library it includes also FILETIME
timestamps provided by Windows kernel
process. Extended Info also holds time zone
information for each frame so it is possible to
join traffic captures from different places on
Earth without any additional time recalculations.

Every Microsoft NetMon file starts with Capture File
Header (CFH) which acts as signposts containing
starting offsets (byte address) to previously
mentioned sections.
Fig. 3 shows the whole structure and illustrates offset
pointer logic.

Fig. 3: MS NetMon structure and passing of pointers

Existing Tools

There exists a variety of tools for handling PCAP
files differing in what API they use or in which
languages they are written. Some of them are even
subparts of deep packet analyzing programs like
Wireshark or MNM. For instance capinfo (part of
Wireshark’s installation) is a useful program for
displaying all important information about one PCAP
file. The most known and widely used tools for
merging multiple PCAP files into the one output file
are Wireshark’s Mergecap [5], FreeBSD’s tcpslice
[6] or MNM’s NMcap [7].
Unfortunately only NMCap is capable of merging
PCAP files in any of previously mentioned formats,
the others support only a limited set. Table 1
summarizes this information.

Table 1: Supported formats
Program LibPCAP PCAPng MS NetMon
Mergecap YES YES NO
tcpslice YES NO NO
NMCap YES YES YES

Time Order Issue

In this section we introduce term time order issue.
We describe how PCAP files with this problem look
like, how it happens and how it influences existing
tools for merging. But first please note the following
table which summarizes how time information is
stored in different formats above:

Table 2: Time information in PCAP formats
Format Description
LibPCAP Time stored per frame in timestamp

with two UINT32 fields – 1st number
of seconds and 2nd number of
microseconds since 1/1/1970.
Achievable precision is 1 µs.

PCAPng Time also stored per frame in
timestamp as one UINT64 field
measuring units since 1/1/1970 with
adjustable precision according to
if_tsresol Option settings. Default
precision is 1 µs.

MS NetMon The CFH contains initial timestamp
marking the beginning of packet
capture. It is represented as 16 B
SYSTEMTIME variable enabling for
1 ms precision. Then each frame
stores only (even negative) offset
value as UINT64 measuring number
of units (0.1 µs increments, a.k.a.
ticks) since initial timestamp. Since
version 2.4 each frame stores another
timestamp as independent UINT64
FILETIME variable with 0.1 µs
precision.

Now assume that we have a PCAP file where
timestamps are not growing incrementally in list of
all frame containers (e.g. LibPCAP’s PH, MS
NetMon’s FH, PCAPng’s EPB). Fig. 4 contains
Wireshark’s screenshot that illustrates this instance –
timestamps of packets #1, #2, #6 and #7 are correct,
but timestamps of #3, #4 and #5 are not in order.

Fig. 4: Snapshot of PCAP file with Time order issue

This kind of PCAPs with time order issue could be a
result of the packet capture obtained in one of the
following ways:

• Sniff is performed on the multiple interfaces –

that usually means that frame containers are
stored chronologically per each interface section
but not altogether.

• PCAP is created by a simple concatenation of
two or even more PCAPs – the last timestamp of
a file is not necessary preceding timestamps of
packets in the next file.

• Frame containers are disordered – either by
purposely exporting them from the one PCAP in
to another or because of delayed packet
processing by capturing engine.

In general, packets can be received simultaneously on
different interfaces or even on different capturing
machines and can have (nearly) same timestamp.
However relevant timestamps are not stored in
chronological order in PCAP files with time order
issue.
Now if we use any previously mentioned tool
(Mergecap, NMcap or tcpslice) and try to merge
input PCAPs into the chronologically sorted PCAP
then we will receive the wrong output. Those
programs take from each input PCAP file always the
first unprocessed frame container and compare their
timestamps between each other. Hence described
algorithm just preserves bad time order of frame
containers in the resulting output PCAP. Existing
tools expect only the basic physical layout of input
files – timestamps are growing incrementally without
any exception.

CONTRIBUTION

We have decided to solve previously mentioned issue
with our own tool, called PCAPMerger. This section
introduces some of the basic implementation and
design notes.
PCAPMerger is implemented in C# language as a
console application for .NET framework version 4.
Previous version of PCAPMerger was based on
MNM API and its C# wrapper. Unfortunately
resulting application was proven to be ineffective.
Hence, we have decided to reimplement it to be
independent on any API and to use a low-level binary
file access – direct file stream reading and writing
instead of indirect access to content via API. Without
going to unnecessary details PCAPMerger works as
follows where time complexity is based on total
number of frames � in all input PCAP files:

1) ParseArgs() – Tries to parse input

arguments from console and setup appropriately
application’s behavior.

2) CheckAndOpenSfsFiles() – Check input
PCAP files existence and open them for binary
read operations.

3) ParseSfsFiles() – Parse binary content of
PCAPs, namely all important general
information (e.g. GH, SHB, CFH, frame
headers). Initialize abstract data type collection
named Frames for each PCAP files that stores
frame relevant data (e.g. timestamps, frame
length). Time complexity �(�).

4) VerifyMediaTypes() – Function verifies
that all frames in PCAPs are of supported L2
type. Following types are accepted Ethernet,
FDDI, RawIP, IEEE 802.11, ATM, any others
are removed.

5) SortFrames() – Concatenate all Frames to
one giant collection and sort it according to
timestamp information using own delegate
sorting algorithm. Time complexity varies upon
sorting algorithm – application offers to use
either QuickSort �(��)or HeapSort �(� log �).

6) CreateOutput() – Creates resulting PCAP
file for binary writing. The file includes all
frames from input PCAPs but sorted
chronologically and it is in LibPCAP format.
Time complexity �(�).

7) CloseFiles() – Close input PCAPs.

Thanks to used sorting mechanisms and initial
preprocessing of data, our tool is capable of effective
merging of PCAPs even thou they suffer with time
order issue.
PCAPMerger supports all three previously described
PCAP formats and is easily upgradable to any new
future format to come. Besides that we can also
merge mixture of different PCAP files on the input.

PERFORMANCE TESTING

Scenario and settings

Only PCAPMerger is capable to correctly merge
PCAP files inside which total time order are not kept.
Nevertheless in this section we show performance of
our application in use-case where time order of
frames is ensured – merging ordinary PCAP files
without time order issue and motivation behind is to
compare performance of our solution with the
existing ones.
To prove PCAPMerger effectiveness we have
conducted series of tests focused on measuring CPU

and memory requirements and I/O operations.
Among tested tools there is also our previous version
of PCAPMerger old from the beginning of year 2012
that was based on NetMon API.
All programs participated in tests, namely,
Mergecap, NMcap, previous version called
PCAPMerger old and our brand new PCAPMerger –
are compared on the same PCAP testing set in
LibPCAP format. It is because (see Table 1), this is
the only format that is supported by all programs.
Testing set consists of one referential big PCAP file
format with communication recorded on the
backbone network of Brno University of Technology.
A size of this file is 1 GB, which reflects usual sizes
of real-world PCAP files. The big PCAP is split into
ten chronologically consecutive smaller input PCAP
files with the approximately 100 MB each.
All measurements were performed on computer
machine with Intel Core i7 CPU quad core with 3.6
GHz, HDD 500GB with NTFS, installed 16 GB of
DDR3 RAM and running Windows 7 x64.
Smaller input files are passed to applications in
chronologically reversed order to test the worst case
scenario for tested routines. Table 3 and Table 4
summarize measured values of tested tools done by
Windows Performance Monitor [8] and Windows
Performance Analyzer [9].
The meaning of numbers in Table 3 is following:

• Time = duration of application run;
• Memory = total size of memory pages

touched by process during application run;
• I/O Read/Write = the first line is the number

of read/write operations, the second line is
total number of bytes read/write during I/O
operations, the third line is average amount
of data processed per one operation.

Table 4 on the next page provides a comparison of
PCAPMerger with other test participants.

Table 3: Absolute comparison of measured parameters during tested programs runs
Program Time Memory I/O Read I/O Write

PCAPMerger 8.6 s 52 MB
1,578,758 ops

5,583,342,861 B
c. 3,537 B/op

306,992 ops
1 257 436 288 B

c. 4,096 B/op

Mergecap 3.3 s 6.3 MB
288,986 ops

1,183,609,240 B
c. 4,096 B/op

306,992 ops
1,257,436,288 B

c. 4,096 B/op

NMCap 293.9 s 794 MB
36,744 ops

1,204,307,836 B
c. 32,776 B/op

3,159 ops
2,301,226,389 B
c. 728,466 B/op

PCAPMerger old 61.1 s 112 MB
73,365 ops

2,403,996,078 B
c. 32,767 B/op

5,913 ops
3,697,550,024 B
c. 625,325 B/op

Table 4: Relative comparison of measured parameters during tested programs runs
PCAPMerger
 vs.
Program

Run speed
Memory

requirements
Bytes read Bytes written

Mergecap c. 2.6× slower c. 8.3× more c. 4.7× more equal
NMCap c. 34.2× faster c. 15.3× less c. 4.6× more c. 1.8× more
PCAPMerger old c. 7.1× faster c. 2.1× less c. 2.3× more c. 2.9× more

Fig. 5: Arrangement of I/O operation types for PCAPMerger

Discussion

Each output was automatically compared with the
original big PCAP file. No content differences (none
missing or malformed frames) were detected although
sizes of output files slightly varied according to
applications approaches to storing information (e.g.
NMCap uses MS NetMon as default output format
instead of LibPCAP).
Let us briefly discuss results of individual tools.
NMCap achieved the lowest performance. It needs
much more resources to complete the same task than
others. It highly utilizes CPU and what is more severe
its memory consumption is not scalable. Additional
tests with NMCap revealed that trying to merge ten
1 GB large PCAPs together depletes all available
memory and OS ends up with excessive swapping
and reallocating memory pages. Hence, NMCap
seems to be not suitable for merging large PCAP
files.
We can observe a significant improvement in speed
and more than twofold decrease of memory
consumption when comparing current and old version
of PCAPMerger. Hence, disengaging program from
NetMon API had positive impact on overall
performance.
The results show us that Mergecap outperforms our
tools in the speed of merging task. That is because it
uses the same approach based on the direct binary
access to PCAP files and it has very simplified
sorting logic. Hence, it needs nearly no memory
because it doesn’t need to cache anything. Still
Mergecap is unable to deal with time order issue as
all other competitors of PCAPMerger.
The last notable measured parameters are I/O reading
and writing operations during run of each application.
A comparison of the total number of operations does
not clearly reflect effectiveness of the implementation
– on the one hand a program could use just a few

operations each obtaining a large block of data. On
the other hand it could use many quicker operations
each obtaining a smaller part of data. Tested disk file
system is NTFS which has 4 KB as the default block
size. Because of that we consider 4 KB of data
transferred per operation as optimum. From all testing
subjects only PCAPMerger and Mergecap reach this
transferring speed. Notice excessive amount of data
read by PCAPMerger – nearly 5.5 GB. Unfortunately
this overhead is connected with .NET framework
implementation of binary access to files. Related
basic C# methods for reading, writing and seeking in
file stream are “safe” so that they have exception
catchers and fail safes which cannot be overridden
and which introduce additional I/O Read operations.
This illustrates chart on Fig. 5 where green bars
represent portion of I/O Read operations and red bars
represents I/O Write operations. During
SortFrames() functions starting at time 5.4
second only I/O Write should occur but inside .NET
framework those methods are connected with some
additional I/O Read methods.

CONCLUSION AND FUTURE WORK

In this paper we summarized information about
PCAP formats – namely structure of file, usage of
timestamps in the frame of captured packets timing
and ordering. We provided analysis of existing freely
available tools for merging/concatenating multiple
PCAPs into the one file and introduce our own
solution.
We compared performance of our PCAPMerger on
the testing set and proved that it is superior to our
previous version based on NetMon API PCAP
manipulation and the other tool called NMCap.
PCAPMerger’s performance is comparable to
Mergecap and thus it could be used as an equivalent

or even as a replacement in cases of merging files in
PCAPng or MS NetMon format.
Deeper profiling of PCAPMerger reveals that it
spends nearly 40% of execution time in
SortFrame() function. Hence, we want to work
on improving sorting algorithm in near future, thus
making PCAPMerger even faster. We also want to
make it functional part of bigger framework for
handling PCAP files.
Source codes of current version of PCAPMerger
application importable to Visual Studio 2010 could
be downloaded from:
http://www.fit.vutbr.cz/~ivesely/prods.php.en.

ACKNOWLEDGEMENT

This work was partially supported by the BUT FIT
grant MV-VG20102015022 “Modern Tools for
Detection and Mitigation of Cyber Criminality on the
New Generation Internet” and in frame of ESF
project CZ.1.07/2.3.00/09.0067 “TeamIT – Building
Competitive Research Teams in IT”.

REFERENCES

[1] G. Harris. (2011, March)

Development/LibpcapFileFormat. [Online].
Available from WWW:
<http://wiki.wireshark.org/Development/Libpc
apFileFormat/>

[2] T. Carstens. (2012, February)
TCPDump&libpcap. [Online]. Available from
WWW: <http://www.tcpdump.org/>

[3] L. Degioanni, F. Risso, and G. Varenni. (2009,
July) PCAP Next Generation Dump File Format.
[Online]. Available from WWW:
<http://www.winpcap.org/ntar/draft/PCAP-
DumpFileFormat.html>

[4] Microsoft. (2012, February) Network Monitor -
Site Home. [Online]. Available from WWW:
<http://blogs.technet.com/b/netmon/>

[5] S. Renfro and B. Guyton. (2012, February)
mergecap - The Wireshark Network Analyzer
1.5.0. [Online]. Available from WWW:
<http://www.wireshark.org/docs/man-
pages/mergecap.html>

[6] B. Fenner. (2012, February) The tcpslice project.
[Online]. Available from WWW:
<http://sourceforge.net/projects/tcpslice/>

[7] P. Long. (2006, October) NMCap: the easy way
to Automate Capturing. [Online]. Available from
WWW:
http://blogs.technet.com/b/netmon/archive/2006/1
0/24/nmcap-the-easy-way-to-automate-
capturing.aspx>

[8] Microsoft. (2012, February) Performance and
Reliability Monitoring Step-by-Step Guide for

Windows Server 2008. [Online]. Available from
WWW: http://technet.microsoft.com/en-
us/library/cc749249.aspx

[9] Microsoft. (2012, July) Windows Performance
Analyzer. [Online]. Available from WWW:
<http://msdn.microsoft.com/en-
us/library/windows/desktop/ff191077(v=vs.85).as
px>

