
POSTER: Robotic Visual and Inertial Gaze Control using
Human Learning

José Prado
University of Coimbra, Portugal

jaugusto@isr.uc.pt

Jorge Lobo
University of Coimbra, Portugal

jlobo@isr.uc.pt

Jorge Dias
University of Coimbra, Portugal

jorge@isr.uc.pt

Figure 1: Robotic Head

ABSTRACT
Humans make use of inertial and vision cues to deter-
mine ego-motion. Bayesian models can be used to rep-
resent the human behaviour to be used in a robot. An
environment may be composed by an infinite number
of variables and humans deal with some of them each
time a motor decision needs to be taken.

1 INTRODUCTION
One of our main challenges was finding variables that
model the environment in way similar to humans. Of
course it was needed to start from accepting some as-
sumptions. In this work we are only considering visuo-
inertial information. The visual information that we
use is the mean of sparse optical flow based on feature
tracking. We show that the mean flow is strongly re-
lated with the robotic ego-motion but alone it cannot
deal with ambiguous situations that arise. Further we
concluded that the fusion between inertial and visual
information solves ambiguity problems.

Ambiguity is another problem that happens even on
humans, if we look only to a black wall and someone
shake our head, we could not know that the head was
moving only by using the vision, but we are sure our
head is being shake because of our vestibular system.
In our robotic platform, the same ambiguity happens,
when turning off the lights of the room the robot will
act only with the inertial information.

Inertial sensors explore intrinsic properties of body
motion. From the principle of generalised relativity of
Einstein we known that only the specific force on one
point and the angular instantaneous velocity.
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No other quantity concerning motion and orienta-
tion with respect to the rest of the universe, can be
measured from physical experiments inside an isolated
closed system. Therefore from inertial measurements
one can only determine an estimate for linear accelera-
tion and angular velocity. Linear velocity and position,
and angular position, can be obtained by integration.

2 RELATED WORK
Fusion of inertial and visual information was done in
[1] and good results were obtained. Unit sphere projec-
tion camera model was used, providing a simple model
for inertial data integration. Using the vertical reference
provided by the inertial sensors, the image horizon line
could be determined. Using just one vanishing point,
it is possible to recover the camera’s focal distance. In
a typical indoor corridor scene, the vanishing point can
also provide an external bearing for the system’s navi-
gation frame of reference.

The integration of inertial sensors can reduce ambi-
guities and improve robustness of structure from mo-
tion methods. The dual problem of motion estimation
from observed structure has long been pursued. It is
also said in [2] that these sensors have useful comple-
mentarities, each able to cover the limitations and defi-
ciencies of the other. [3]

3 PROPOSED APPROACH
Our robotic implementation of gaze control basically
perform visuo-inertial servoing. But the sensory inputs
are being processed using Bayesian inference using the
current instantaneous data and a previous probabilistic
learned table.

The image optical flow provides motion data from the
visual sensor. We analysed and implemented a variation
of Lucas Kanade sparse optical flow building upon the
ideas in [4]. Thus, we also decided to rely in the follow-
ing assumption: the information from the image motion
which is strongly related with the human decision when
reacting to some stimulus is the mean flow.

It is intuitively preferable to have a real time appli-
cation, since the idea was to show the flow arrows in
the screen and also the inertial data on the fly to influ-
ence the human during the learning phase. Thus, per-
formance challenge was instantaneously added to our
project idea together with the purpose of using a robust
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flow algorithm when dealing to changes of lighting, size
or image motion.

3.1 Sparse optical flow
We used an algorithm based on a pyramidal implemen-
tation of the classical Lucas-Kanade algorithm. An iter-
ative implementation of the Lucas-Kanade optical flow
computation provides sufficient local tracking accuracy.
RANSAC was implemented to remove the outlier vec-
tors and then the meanflow was calculated with the re-
maining flow vectors (fig. 2).

3.2 Bayesian Model of Visuo-vestibular-
Based Gaze Control

The contribution in the mean flow calculation allows a
better characterisation of the human decision.

The purpose is about reaching to a feasible Bayesian
model for a robotic gaze control following the ideas
presented on[5] and [6]. From the camera image we
extract Fdt and Fat which are the direction and the am-
plitude of the mean flow. From the IMU(Inertial Mea-
surement Unit) we get the angles (Roll, Pitch and Yaw)
that are further shown in this paper as Rt (for Roll), Pt

(for Pitch), and Y t (for Yaw).The actuator control acts
based on current angular position and on instantaneous
flow information of the system. The pan-tilt unit are
controlled with combined commands for target position
and velocity. The motors move to the desired target po-
sition with the selected velocity and stop. The motor
model takes this into account by having the current mo-
tor command depending on the current state and also on
the probabilistic table filled out with the human reaction
information.

The following variables are used:

• St : is a tuple with the following four variables trans-
formed in possible motor reactions

– Rt : (roll) angle of the human-reaction for a given
state

– Y t : (yaw) angle of the human-reaction for a given
state

– Fdt : direction of the vector of the mean flow
(comes from vectored product between u and v)
(Radians)

– Fat : amplitude of the vector of the mean flow

• Mt : is a movement variable with the following scope
(UP, DOWN, LEFT, RIGHT, STOP)

– The five states of Mt are concluded by doing
atomisation of the raw values in the following
variables

∗ pan motor velocity: Pω — pan motor target
position: Pθ

∗ tilt motor velocity: Tω — tilt motor target po-
sition: Tθ

• Ht : is the human reaction to be learned (UP, DOWN,
LEFT, RIGHT, STOP)

To simplify notation, state variables are grouped in a
vector S = (R0:t ,P0:t ,Y 0:t ,Fd0:t ,Fa0:t) and motor vari-
ables are considering to be in the range U,D,L,R,S
after atomisation from M = (Pω ,Pθ ,Tω ,Tθ ). The
Bayesian program that show the relation between these
variables is shown in (fig. 3).

4 EXPERIMENTAL PARADIGM AND
PROTOCOLS

4.1 Apparatus and Stimuli
We want to use a HMD (Head Mounted Device) to pass
the visual stimulus from the robot to the human sub-
ject. However currently we used the input from the
keyboard reflexes when the subject looks to the screen.
Our robotic head (fig.1) is a common platform consisted
by many sensors, but basically those that we are using
are a stereo camera, a pan-tilt unit and a inertial sensor.
Those sensors are attached in the same structure. Thus,
every motor command sent to the pan-tilt unit will re-
flect on IMU (Inertial Measurement Unit) and also in
the camera images. Consequently the sent motor com-
mands will also have a direct influence on the calculated
optical flow and inertial data.

.
Attitude Heading Reference System (AHRS) are 3-

axis sensors that provide heading, attitude and yaw
information for aircraft. AHRS are designed to re-
place traditional mechanical gyroscopic flight instru-
ments and provide superior reliability and accuracy.
We used a low grade AHRS that is a Xsens MTi ,
which uses a combination of 3-axes accelerometers, gy-
roscopes and magnetic sensors to output estimates of
its own orientation in geo-referenced coordinates. The
AHRS orientation can be given in the form of a rota-
tion matrix {W }RAHRS|i which register the AHRS sen-
sor axes with the north-east-up axes. The camera is a
videre STH-MDCS3-9cm stereo camera. Videre De-
sign makes stereo imaging hardware for real-time 3D
imaging using the triangulation principle. Stereo im-
ages are transferred to a PC using the IEEE 1394 (Fire-
Wire) bus.

4.2 Subjects
Five human subjects with normal working visual and
vestibular systems. In those subjects with visual dis-
tortion this should be compensated by using glasses or
lens, thus the distortion perform no impact to the ex-
periment. We will mix male and female according to
availability of the persons. The subjects should be at
least three naive and two authors.
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4.3 Protocol
By using the HMD to give the robot images to the hu-
man eyes the visual connection becomes direct between
the robot and the human. We can not inject artificial in-
ertial sensor data into human brain. Thus, what is pos-
sible to be done is a indirect correlation where during
the tests, the human will use it’s own vestibular system
while the robot will use the artificial inertial system.
Gray scale images are the input, with several visual de-
tectable features on the environment. Visual Features
are necessary by the human brain to have notion of mo-
tion. If a human is moving sideways in front of a per-
fectly white wall, once the acceleration stabilises sub-
ject will have no sensation of motion. However if this
same wall is full of visual detectable features, human
will naturally detect the motion only by the visual in-
fluence. We have the same response on artificial optical
flow algorithms, and that’s why we are interested on
considering the optical mean flow as a artificial visual
ego-motion notion measurement variable.

5 RESULTS AND CONCLUSION
A first version of human-learning was implemented, us-
ing keyboard to control the robot while monitored by a
human (human in the loop way of learning like in [7]).
We still want to improve our way of learning by using
a helmet equipped with camera and IMU and then de-
tecting real human neck movements.

Consider that we numbered our random variables as
follows:

1. is Rollt , sub-variable of Imut variable

2. is Pitcht , sub-variable of Imut variable

3. is Yawt , sub-variable of Imut variable

4. is Fdt , the Flow Direction

5. is Fat , the Flow Amplitude

The learned table (fig. 4) is a 4D probability table with
dimensions [36x5x10x5] in our test, we plotted this in
five 3D graphics in order to be possible to visualise
them.

It is possible to observe that for the UP, DOWN,
LEFT and RIGHT movements, the main categorising
random variable is Fdt , in the other hand for the STOP
movement Fdt is very confusing, thus Imutwill be much
more useful categorising this decision.

Testing the reaction of the system

Fake stimulus were injected into the system to measure
if the robot’s reaction would be like expected for that
stimulus. As human trained the system, we know (ap-
proximately) which stimulus to create and which reac-
tion to expect. For example if we train a walking robot

Figure 2: Sparse Flow Experimental Test

not to fall from a step, we can put a step in front of it
and our expectation will be that the robot do not fall. In
our case we trained the head to be centred and then we
give stimulus simulating that the head would moving to
one or another side “forever” during each test. We also
gave stimulus for the system to believe the head was
flying up like a rocket and also falling down in free fall.
It was performed 100 trials with different stimulus for
each expected reaction.
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Variables:

S0:t = (R0:t ,Y 0:t ,Fd0:t ,Fa0:t): state variable

M0:t : motor movement variables, scope {U,D,L,R,S}

H0:t : human reaction variables, scope {U,D,L,R,S}

Fd0:t : flow direction (Rad)

Fa0:t : flow magnitude (pixels)

Decomposition:

P(St ∧Mt ∧Ht ∧Fdt ∧Fat =

P(Rt .P(y)t)

.P(H|R∧ y)

.P(Fd|H ∧R∧ y)

.P(Fa|Fd∧H ∧R∧ y)

.P(M|Fa∧Fd∧H ∧R∧ y)

Parametric forms:

P(Mt) = P(H0:t |St)

Identification:

Bayesian human-learned gaze control.

Question:

P(Mt |St ∧H0:t)

Figure 3: BayesianProgram

One stimulus for each reaction would be the trivial
case to categorise, but for this preliminary results we
had approximately 98% of correct decisions in 500 dif-
ferent stimulus to be categorised in 5 movements.

6 FUTURE WORK
In this work we performed a learning based on hu-
man reactions, and the Bayesian program we proposed
efficiently models the ego-motion with visuo-inertial
information. Adding non-representative variables to
the Bayesian model may not only waste performance,
rather it may also cause confusion to the algorithm
when trying to categorise the correct reaction to take.

The system is running real time at 3fps, we did not
use a real time operational system, so this frequency
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(a) UP (b) DOWN

(c) LEFT (d) RIGTH

(e) STOP

Figure 4: Probability Table - Learned data -

(a) Falling down in
free fall “forever”
(simulation)

(b) Launched up as a
rocket to the sky “for-
ever” (simulation)

(c) Translating to left
side “forever” (simu-
lation)

(d) Translating to
right side “forever”
(simulation)

(e) Stopped

Figure 5: System reaction (Imut vary even stopped be-
cause of Magt mainly)

may vary a little according to our non real time UNIX
system. Learning of motor behaviours was done by our
Bayesian program and it allowed fusion between iner-
tial and visual input.

For future work, we intend to perform more exper-
iments with different environments. Restrict the envi-
ronment, for example a white point in a black back-
ground would be a way to push the human to pay atten-
tion in something near to the flow, rather then in other
things that we cannot predict. Another desired set up
is adding more moving objects into the scene it will be
interesting to verify what happens if we try to exceed
the gross errors that our RANSAC implementation is
able to filter. Also we want to improve the speed of the
system motor reaction, a new hardware platform is al-
ready being constructed. This new platform will have a
binocular active vision system witch will allow stereo
vergence with an adjustable base line, with common
head tilt and neck pan, mimicking the human degrees
of freedom.
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