
POSTER: Effective Object Sorting Technique for
Developing 3D GUI Including Translucent Objects

Byungkwon Kang
Samsung Electronics

416, Maetan-3Dong, Yeongtong-Gu,
 443-742, Suwon-city, Gyeonggi-Do, Korea

bk76.kang@samsung.com

Sunghee Cho
Samsung Electronics

416, Maetan-3Dong, Yeongtong-Gu,
 443-742, Suwon-city, Gyeonggi-Do, Korea

shane.cho@samsung.com

ABSTRACT
In developing a user interface, it is very important to provide usability, intuitiveness and convenience. To
accomplish these factors, 3D user interface can be one good solution. Recently, many kinds of embedded
devices have been developed and utilized for various areas of human life; for example, Digital TVs, game
consoles, MP3 players, etc. A GUI makes these devices easier to use and more effective. But, their poor
hardware performances often prevent developing a high quality visual effect on their GUIs. A visual effect using
alpha blended object is one of the typical examples of this kind that limits the development of 3D applications
on an embedded hardware. In this paper, we propose an effective object sorting technique that can be used to
develop a 3D GUI including many translucent objects.

Keywords
3D graphics, 3D GUI, Real-time rendering, Alpha blending, Object sorting, Translucent object.

1. INTRODUCTION
Alpha blending is a very useful technique that can

be utilized in various areas of 3D graphics in order to
generate more elegant visual effects. To composite
colors of several translucent objects naturally, not
only the rule for color composition but also the order
of compositing objects must be selected carefully.
These days, 3D graphics APIs such as OpenGL and
Direct3D support blending of translucent objects’
colors by using alpha channels very well. But, depth
sorting which determines the order of composition
for accurate blending of colors is not supported on
current graphics hardware and APIs. Therefore, an
effective sorting technique for correct composition of
colors in an order of objects’ distances is
indispensable to high quality 3D graphics.

In this paper, we propose an effective object sorting
technique that can be utilized for developing a 3D
GUI including many translucent objects. In
designing this technique, we defined some
restrictions and conditions that are often found in

developing a 3D GUI. These factors are very useful
to simplify the method of determining spatial
relations between 3D objects.

This paper is organized as follows. First, in Chapter
2, we introduce previous works about depth sorting
methods and in Chapter 3, we summarize the
preconditions and restrictions that are often found in
developing 3D GUIs including translucent objects. In
Chapter 4, we describe our depth sorting technique
and summarize the performance and effectiveness in
Chapter 5. Finally, we conclude this research in
Chapter 6.

2. RELATED WORK
Depth ordering of 3D objects is a classic problem in

various areas of computer graphics. There have been
many types of research done to sort the primitives in
object space [SBGS69, NNS72]. But their
performances largely depended on the number of
objects to be used. Therefore, there were many
attempts to avoid the dependency on the number of
objects [SBM94, KLNR97, SL98, WMS98, BOS04]. Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

If the spatial positions of objects or polygons are
not changed, a space partitioning data structure can
be the most effective solution for ordering 3D objects.
A binary space partition (BSP) of a set of objects is a
recursive convex subdivision of space. It was
designed to compute a visibility order among
polygonal primitives used in graphics applications by

WSCG2008 Poster papers 13 ISBN 978-80-86943-17-6

Fuchs et al. [HKN80]. The BSP tree has been a
general solution and widely used for hidden surface
removal, shadow generation, ray tracing, real-time
3D games, and so on. Most of the BSP algorithms
work well only in static environments. But,
traditional BSP algorithms were not suitable for a
dynamic environment where the position of objects
can be changed dynamically. Torres [Tor90] and
Agarwal et al. [AGMV97] presented dynamic BSP
data structures that are able to compute visibility
ordering of polygons in a dynamic scene.

3. PRECONDITIONS AND
RESTRICTIONS

In this chapter, we defined some preconditions and
restrictions that are often found in implementing 3D
GUIs. The preconditions and restrictions that will be
considered in developing a 3D application focused
on this research are as follows.

a. All objects in 3D space have a boundbox which
has a shape of rectangular parallelepiped.

b. There is no intersection between each object.

c. It is developed on a dynamic environment that
all spatial relations between objects change
every time frame.

d. Object sorting is performed per each object
using their boundbox.

All of these preconditions and restrictions are based
on a premise that our research aims to develop a
useful depth sorting method for 3D GUIs. Because
our object sorting method is based on these
conditions, our method is not suitable for some
common 3D applications. But, the conditions
described in this section are common features that
can be found in most graphics user interfaces and
they are very useful to simplify the object sorting
process.

4. DESCRIPTION OF THE NEW
SORTING TECHNIQUE

In this chapter, we describe a new sorting technique
for accurate alpha blending proposed in this paper.

Finding overlapped objects
For the first step, find all objects overlapped with

other ones. To make the order of composition of all
objects in the scene, the spatial relations between
object pairs must be determined. The process of
finding overlapped objects in the eye coordination
space is very simple. Because all boundboxes are
shaped as a rectangular parallelepiped, up to 3 faces
of a box are visible from the view point. Using these
visible faces, we can construct a quad or hexagon

using vertices on visible faces. After then, by
applying a 2D overlapping test to these polygons we
can easily find overlapping objects.

Figure 1. Projecting boundboxes into 2D polygons.

Constructing 2D polygon from boundbox
To construct a 2D polygon, we need to find the

sequence of vertices that are constructing the contour
of visible region of a boundbox. To achieve this
process effectively, we designed an easy way to find
the vertex sequence that is constructing the contour
of visible faces of a boundbox.

At first, we assigned a fixed order of indexes to all
faces and each vertices of a boundbox. As illustrated
in Figure 2, all faces and vertices have uniquely and
sequentially assigned indexes. And the boundboxes
are transformed into the eye coordinates. After this
transformation process, we can find visible faces
from the camera easily by comparing 4th coefficient
of plane equation of each transformed faces.

Third, we must find the sequence of vertices that
are constructing the contour of visible faces. Because
all faces and vertices have fixed indexes, we can find
which vertices are included in the contour vertex list
earlier on run-time when the visible faces are found.
On run time, we can find the contour vertex list very
quickly by making an index that is calculated by
finding indexes of visible faces and searching its
vertex list from the look up table.

V0 V1

V2V3

V4 V5

V6V7

F0

F1

F2
F3

F4

F5

F5 F4 F3 F2 F1 F0Index =

Fn = 1, if face Fn is visible,
Fn = 0, otherwise.

Figure 2. Making an index from visible faces.

After constructing projected polygon, the
overlapping test can be performed very fast and
effectively because this process is performed in 2D
domain. There are many overlapping test techniques
for 2D polygons and this test can be done easily
[WMS98].

WSCG2008 Poster papers 14 ISBN 978-80-86943-17-6

Finding front-back object
For each object which is overlapping with other

objects, the spatial relation with the overlapped
object must be discerned. To make an accurate alpha
blended result, we must find which object is
occluding the other object carefully and exactly. In
this paper, we propose a simple and effective
technique to find the spatial relation between
overlapped objects based on the preconditions and
restrictions described in Chapter 3.

This technique is based on the restriction that all
boundboxes must be shaped as a rectangular
parallelepiped. From this restriction, we can
determine the spatial relation between two boxes by
finding the number of planes that all vertices of
another object are placed in front of it. There are 3
cases between 2 non-intersecting boundboxes.

a. A places in front of only 1 plane of B.

b. A places in front of 2 or 3 planes of B.

c. There is no plane that A places in front of it.

Let’s consider the first case. In this case, as
illustrated in Figure 3, we can decide which object is
the front object by discerning the spatial position of
view point related to the selected plane. As illustrated
in Figure 3(a), when the view point is placed in front
of the plane, object A is placed in front of object B.
Otherwise, when the view point is behind the plane
as see in Figure 3(b), object B becomes the front
object.

a) front case b) behind case

Figure 3. Spatial relation between selected plane and
camera.

In cases except the first case, it is difficult to find
front or back objects by using only 1 plane. But it is
possible to find nearer object by comparing the
nearest distances of vertices because the two objects
are explicitly overlapped in the view of camera. After
finding front and back objects between overlapped
object pair, the front object is inserted to the front list
of the back object and the back object is inserted to
the back-list of the front object.

Rendering the objects in correct order
After front-back relations of all overlapped object

pairs are discerned, the rendering order can be

decided by using the result of discrimination. This
process is performed based on a simple rule that any
object cannot be rendered before its back-list
becomes empty.

First of all, find an object having an empty back-list.
The fact that an object has an empty back-list means
the objects can be rendered immediately because
there are no objects covered by the current object.
The found object is inserted to the rendering queue
and deleted from the back-list of its all front objects.
If one of the front objects has an empty back-list, the
object becomes a renderable object that can be
rendered immediately. And then, the previous
process is recursively performed in order to remove
the newly selected object from the other object’s
back-list again. After finish this process for all object
in the scene, the remaining objects which are not
inserted yet are the non-overlapped objects. So these
objects can be rendered without any ordering process.

5. EXPERIMENTS AND RESULTS
To verify the performance and effectiveness of out

technique, we performed several test on a desktop PC
with a 2.13 GHz Intel Core2Duo CPU and 1 GB
RAM. To test the performance, we generated random
numbers of boxes and panels that are not intersected
with any other boxes.

Table 1 shows the statistics of results of
implemented applications using the proposed sorting
technique. The test was done using several numbers
of randomly-generated parallelopipedons and parallel
panels. In Figure 4 and 5, we illustrated the results of
rendered image under standard OpenGL environment.
Figure 4 shows the comparison of not blended,
incorrectly blended and correctly blended images.
Figure 5 precisely shows the difference between
correctly and incorrectly rendered results. As shown
in Figure 5(b), the overlapped objects can be
correctly rendered by using sorting technique
proposed in this paper. In Table 1, we summarized
the performances for 100 or 300 numbers of objects
and we illustrated the performance for all number we
considered in figure 6.

6. CONCLUSIONS
In this paper, we proposed a new depth sorting

technique for accurate and fast alpha blending for
developing 3D GUIs. In this technique, we designed
several effective techniques to construct a projected
2D polygon from a boundbox and to determine the
spatial relation between overlapped 3D objects. The
proposed sorting technique is very easy to implement
and it is possible to quickly arrange the depth order
of each object.

WSCG2008 Poster papers 15 ISBN 978-80-86943-17-6

a) without alpha blending b) blended without depth sorting c) correct result with depth sorting

Figure 4. Comparison of the correct and incorrect alpha blended results using 100 random boxes.

Although this technique is able to calculate the
depth orders very quickly, the restrictions make it
difficult to apply our technique for some application
areas. In spite of the restrictions, this technique can
be applied to various 3D applications in a limited
hardware environment if there is not enough
hardware performance.

a) incorrectly blended result b) correctly blended result

Figure 5. Comparison of the correct and incorrect alpha
blended result using 100 parallel panels.

Figure 6. Rendering performance of proposed sorting
technique for parallel panels.

 Random 100
boxes

Parallel 100
panels

Parallel 300
panels

Mean 293.5 fps 396.3 fps 55.3 fps

Best 1651.2 fps 476.3 fps 62.8 fps

Worst 95.9 fps 209.4 fps 49.6 fps

Table 1. Rendering statistics.

7. REFERENCES
[AGMV97] Agarwal P. K., Guibas L. J., Murai T. M.
and Vitter J. S., Cylindrical static and kinetic binary

space partitions. In ACM Symposium on
Computational Geometry, pp. 39-48, 1997.
 [BOS04]. Berg M., Overmars M. and Schwarzkopf
O., Computing and verifying depth orders. In
SICOMP, pp. 437-446, 2004.
[FDFH96] Foley J. D., Dam A., Feiner S. K. and
Hughes J. H., Computer Graphics : Principles and
Practice, 2nd edition, Addison-Wesley, 1996.
 [HKN80] Huchs H., Kedem Z. and Naylor B., On
visible surface generation by a priori tree structures.
In Proc. of ACM SIGGRAPH, Vol. 14, No. 3, pp.
124-133, 1980.
[KLNR97] Karasick M. S., Lieber D., Nackman L. R.
and Rajan V. T., Visualization of three-dimensional
delaunay meshes. Algorithmica, Vol. 19, No. 1-2, pp.
114-128, 1997.
 [NNS72] Newell M. E., Newell R.G. and Sancha T.
L. A solution to the hidden surface problem. In Proc.
of ACM Nat. Mtg., 1972.
 [SBGS69] Schumacker R., Brand B., Gilliland M.
and Sharp W., Study for applying computer-
generated images to visual generation. AFHRL-TR-
69-74, US Air Force Human Resources Lab, Tech.
Rep., 1969.
[SBM94] Stein C., Becker B. and Max N., Sorting
and hardware assisted rendering for volume
visualization. In Symposium on Volume Visualization,
pp. 83-90, 1994.
[SL98] Snyder J. and Lengyel J., Visibility sorting
and compositing without splitting for image layer
decompositions. In Proc. of ACM SIGGRAPH, pp.
219-230, 1998.
[Tor90] Torres E., Optimization of the binary space
partition algorithm (BSP) for the visualization of
dynamic scenes. In Proc. of Eurographics ’90, pp.
507-518, 1990.
[WMS98] Williams P. L., Max N. and Stein C., A
high accuracy volume renderer for unstructured data.
IEEE Trans. on Visualization and Computer
Graphics, pp. 1-18, 1998

WSCG2008 Poster papers 16 ISBN 978-80-86943-17-6

	WSCG2008_Poster_Numbered.pdf
	C03-full.pdf
	C03-full.pdf
	1. INTRODUCTION
	2. RELATED WORK
	3. PRECONDITIONS AND RESTRICTIONS
	4. DESCRIPTION OF THE NEW SORTING TECHNIQUE
	Finding overlapped objects
	Constructing 2D polygon from boundbox
	Finding front-back object
	Rendering the objects in correct order

	5. EXPERIMENTS AND RESULTS
	6. CONCLUSIONS
	7. REFERENCES

	F47-full.pdf

