
Fast GPU-based normal map generation for simplified
models

Jesús Gumbau
Universidad Jaume I,

Spain
jgumbau@sg.uji.es

Carlos González
Universidad Jaume I,

Spain
cgonzale@sg.uji.es

Miguel Chover
Universidad Jaume I,

Spain
chover@uji.es

ABSTRACT

This paper presents a method for normal map generation in the GPU. These normal maps are generated from a high resolution
mesh and can be applied to any simplification of this mesh. This method takes advantage of the fact that there must be a
correspondence between the texture coordinates of the low resolution mesh and the ones of the high resolution mesh. The
proposed method for normal map generation is a brand-new method, since nowadays this process is being performed through
software techniques. Hardware generation greatly reduces time in comparison with present-day solutions. Moreover, it allows
for a dynamic modification of the map. There are some restrictions in relation to how texture coordinates must be distributed.
However, this approach works perfectly with simplified models where these restrictions are fulfilled. This method makes use
of vertex and pixel shaders for the normal map generation.

Keywords: normal map, GPU, shaders, hardware, simplified mesh.

1 INTRODUCTION
The presented method proposes a fast hardware genera-
tion of normal maps that uses vertex and pixel shaders.
This idea involves a real-time normal map generation
from the high-level object.

The final quality of the resulting normal map is com-
parable to those obtained from other software-based
solutions [1] [3] when applied to multirresolution and
simplified models.

Two restrictions have to be accomplished:

• Let�ti = (ui,vi) ∀i ∈ {1,2,3} be the texture coordi-
nates for each vertex on a triangle Tj, where Tj is a
given triangle of the high resoluction mesh. So, the
condition

⋂
Tj = /0 ∀Tj ∈ triangles(Mesh) must be

fullfiled. However, this requirement is studied in the
literature [2][4][5].

• Texture coordinates have to be distributed so that the
texture should be correctly applied to both models.

This method works perfectly for terrains and walls,
because these objects usually meet the requirements.

2 METHOD
Unlike the present-day normal map generation
methods, the presented method generates the maps by
hardware, by making use of vertex and pixel shaders.
Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Posters proceedings ISBN 80-86943-04-6
WSCG’2006, January 30 – February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Object Space Normal Maps The tasks performed by
the shaders for normal map generation are:

• The vertex shader flattens the image by doing: (x=u,
y=v, z=0), where (x,y,z) are the coordinates of the
vertex, and (u,v) are its texture coordinates.

• The pixel shader generates the normal map by out-
putting the normal coefficients as RGB components
per pixel. For this purpose, it is necessary to con-
vert the normal values into the accepted range by
the RGB plane, that is, [0,1].

Tangent Space Normal Maps Moreover, for the nor-
mal map generation in tangent space the following extra
tasks must be performed:

• The vertex shader will receive the tangent space vec-
tors (normal, tangent and binormal) as vertex at-
tributes and will output them so that each fragment
will receive these values linearly interpolated.

• The pixel shader must transform each normal per
pixel into tangent space. The inverse tangent space
matrix is already calculated in the vertex shader and
passed to the pixel shader, so transforming each nor-
mal to tangent space is as easy as multiply the object
space normal by this matrix.

Once calculated, an extra pass must be performed in
order to expand texture borders. This is needed to avoid
artifacts when filtering is enabled at application time.

3 RESULTS

The presented method has been tested with some 3D
models. The obtained times are not comparable with

WSCG2006 Posters proceedings 15 ISBN 80-86943-04-6



Polygons of the Time of Time of Time of
original model our method ATI nVidia

1696 0.08 16850 16306
7910 0.53 24125 50589
48048 4.74 97704 160975
61644 6.02 129969 179569

Table 1: Table of times in milliseconds of normal map
generation

those of present-day software methods, since a few mil-
liseconds are taken by the presented method to generate
the corresponding normal map.

Figure 1: Low and high resolution model meshes of
Tarrasque (725 and 6117 polygons) with the rendered
model

Figure 2: The normal maps in object space of the high
resolution model generated and the simplified version
with this normal map applied

Measured times using an AMD Athlon64 3500+ with
an nVIDIA 6800 can be observed in Table 1.

Figure 1 shows the meshes of both a simplified model
and the high resolution model of Tarrasque, and the
high resolution model rendered.

Figure 2 compares the quality of this method with
ray-tracing based methods. The figure shows the ge-
nerated normal maps and the low resolution model of
Tarrasque with these normal maps applied, using the
methods proposed by ATI, nVidia and our approach,
respectively.

The quality of our method is similar to that of the
ATI’s and nVidia’s methods, as seen in the images.

Moreover, the method also works for terrain and wall
objects because they usually meet the requirements of

this method. Figure 3 and Figure 4 show an example
with the Crater model.

Figure 3: Low and high resolution model meshes of
Crater and the normal map in object space

Figure 4: Renders of the high resolution terrain
(above), low resolution one with the normal map ap-
plied (left bottom) and a plane with the normal map
applied (right bottom)

ACKNOWLEDGMENTS
This work has been supported by the Spanish Ministry
of Science and Technology (TIN2004-07451-C03-03),
the European Union (IST-2-004363) and FEDER funds.

REFERENCES
[1] ATI. Normal Mapper Tool, 2002.

http://www.ati.com/developer/tools.htmlAkeley

[2] Igarashi, T., Cosgrove, D. Adaptative unwrapping
for interactive texture painting. Symposium on In-
teractive 3D Graphics 2001, pp. 209-216

[3] nVidia. nVidia Melody User Guide, 2004.
http://developer.nvidia.com/object/melody_home.html

[4] Sander, P. V., Snyder, J., Gortler, S. J., Hoppe, H.
Texture mapping progressive meshes. ACM SIG-
GRAPH 2001, pp. 409-416

[5] Sloan, P.-P., Weinsteun, D. Brederson, J. Impor-
tance driven texture coordinate optimization. Com-
puter Graphics Forum (Proceedings if Eurograph-
ics ’98) 17(3), pp. 97-104

WSCG2006 Posters proceedings 16 ISBN 80-86943-04-6


	F97-full.pdf
	F97-full.pdf

	A61-full.pdf
	C53-full.pdf

