
Iterative Stripification of a Triangle Mesh:
Focus on Data Structures

Massimiliano B. Porcu

Dip.to Matematica e Informatica
Università di Cagliari

Via Ospedale, 72
I-09124, Cagliari, Italy
massi@dsf.unica.it

Riccardo Scateni
Dip.to Matematica e Informatica

Università di Cagliari
Via Ospedale, 72

I-09124, Cagliari, Italy
riccardo@unica.it

ABSTRACT

In this paper we describe the data structure and some implementation details of the tunneling algorithm for generating
a set of triangle strips from a mesh of triangles. The algorithm uses a simple topological operation on the dual graph
of the mesh, to generate an initial stripification and iteratively rearrange and decrease the number of strips. Our
method is a major improvement of a proposed one originally devised for both static and continuous level-of-detail
(CLOD) meshes and retains this feature. The usage of a dynamical identification strategy for the strips allows us to
drastically reduce the length of the searching paths in the graph needed for the rearrangement and produce loop-free
triangle strips without any further controls and post-processing, while requiring a more sophisticated implementation
to manage the search and undo operations.

Keywords
Computational Geometry and Object Modeling -- Geometric algorithms, languages, and systems.

1. Introduction
A triangle strip is a set of connected triangles

where a new vertex implicitly defines a new triangle.
Triangle strips are used to accelerate the rendering of
objects represented as triangle meshes, in a pre-
processing stage the mesh is partitioned in a set of
triangle strips (possibly composed of one isolated
triangle) and then each strip is passed to the Graphics
Processing Unit (GPU) for rendering. The advantage of
the strip representation over rendering each triangle
separately, is that it makes it possible to reduce the
number of vertices sent to the GPU from 3n (where n is
the number of triangles in the mesh) to n+2 in the best
case.

Since the CPU-GPU communication tend to be the
most common bottleneck of the whole visualization
process, it is evident that a good stripification strategy
could virtually improve by a factor of three the CPU-
GPU bandwidth (at the best case, when a single strip,
representing the whole mesh, is produced) and,
consequently, the whole visualization.
Unfortunately it has been proven [Gar76, Ark96] that a

problem equivalent to searching the optimal single strip
(finding a Hamiltonian path on the dual graph) is an
NP-complete problem, thus the stripification process
should be based on local heuristics.
In a previous paper [Por03] we presented a solution to
the generation of a stripification based on the tunneling
operator. This is a single topology operator that we
apply to the dual graph of the triangulation and allows
us to either optimize an existing stripification or to
generate a new stripification from scratch. The
implementation of the algorithm relies on a single
relevant parameter, the tunnel length, which influences
both the time spent to stripify the mesh and the final set
of strips obtained (number and mean length). Thus is
very easy to use even for non expert users.
In this work we present in finer detail the algorithm and
the data structures we used to implement it.
The rest of this work is organized as follows: in section
2 we briefly go over the previous work done in
stripification; we then show, in section 3, the relations
existing between the triangle mesh and its dual graph,
introduce the tunneling operator and our solution to the
problem; section 4, the most relevant in this context, is
dedicated to describe in detail the implementation of the
algorithm and the data structure and techniques used for
doing it; finally, in section 5 we draw our conclusions
and describe the future evolutions of this work.

2. Previous Work
The so-called stripification techniques are a subset

of all the techniques devised in recent years to face the
problem of compressing the geometry, that is finding

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

WSCG POSTERS proceedings
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

good strategies and algorithms from them to reduce the
space needed to describe a mesh (tipically a mesh of
triangles) in terms of vertices position and connectivity.

Synthetically, to generate a strip from a mesh means to
rearrange the order in which the vertices are stored. The
strips obtained are smaller than the original mesh when
coming to the final rendering since, while the single
triangle needs 3 vertices for its visualization to be sent
to the GPU, the triangle strip needs n+2 vertices to be
sent to the GPU to render n triangles. The optimal
single strip encoding the whole mesh would reduce the
number of vertices sent to the GPU by a factor of three.
The great advantage of using triangle strips consists of
the availability of such a primitive in the OpenGL
graphics library. Generating a stripification of a mesh
means to be able to feed the GPU with the obtained
structure without any further effort. It is actually to
point out that OpenGL supports, without any vertex
replication, only the sequential triangle strips.
Generalized strips could thus get us to send more than
once some vertices to the GPU. It is beyond the scope
of our current implementation to tackle this problem,
but we plan to investigate this.
This explains why a lot of effort has been spent in
elaborating good heuristics to stripify a mesh [Eva96,
Cho97, Spe97, Xia99, ElS99, ElS00, Ise01, Est02].
It is worthwhile to explicitly mention a technique
[Hop99] that uses a greedy algorithm to take advantage
of the caching strategy of the graphics boards, thus
differentiating in a way from the others cited, and the
work [Ste01] that first proposed to use the tunnelling
operator on the dual graph, which is described in detail
in the next section.

3. The Triangle Mesh and its Dual Graph
Each triangle mesh can be alternatively represented

by its dual graph. It is a graph in which each node is
associated to a triangle of the original mesh and an edge
represents an adjacency relation. One trivial property of
such a graph is that each node has, at most, three
incident arcs. In case the original mesh is
homeomorphic to a sphere and has genus 1, each node
has exactly three incident arcs (see Figure 1).

For the details regarding the tunneling operator and our
approach to the solution we suggest to read the works
of Stewart [Ste01], refined by ourselves [Por03]; we
give here just a description of the data structure.

The Data Structure
We now focus our attention on the description of

the data structure used as a support to the
implementation of the tunneling algorithm, and on
some of the most interesting details of the
implementation itself.

You will not find, instead, any detail of the
functionalities related to visualize the three-dimensional
scene since it is not interesting for the purposes of this
work.

Figure 1: A triangle mesh and its dual graph.

Our implementation of the tunnelling algorithm is not
trivial, since it requires that the supporting data
structure should be able to keep track of the dynamical
identifier update. Moreover, since the data structure
should support an undo operation, we should, in fact,
be able to discard any change, if the tunnel search does
not end successfully.
First of all, it is worthwhile to tell that we chose the OO
paradigm to be the development framework to be used.
Alongside with obvious readability, manageability and
reusability issues we thought that the encapsulation
given by OOP was very useful to abstract the behaviour
of the data structures we used.
As we described before, the tunnelling algorithm works
on the mesh’s dual graph. Its implementation requires
first to find a terminal node for a path in the graph and
then to traverse the graph (i.e., the structure
representing it) to find a complementable path (a path
alternating solid and dashed links, beginning and
ending with a solid one). We thus need a robust support
for the traversal allowing us to get a snapshot of the
situation, step by step during the algorithm execution.
We can see a sketch of the structure in Figure 2. The
graph nodes (corresponding one to one to the triangle in
the mesh) are each represented by an object instance of
the class Triangle, encapsulating the geometrical
(vertices position) and topological (connectivity, i.e. the
links between adjacent triangles) information.

Node 1
Node 2
Node 3

Node N
…

Triangle Array

Class Triangle

Node Link
Node A
Node B
Node C

Figure 2: A simple sketch of the supporting data

structure: the Triangle Array is an array of object

instance of the class Triangle that encapsulates the
behavior of a triangle in the mesh (a node in the

dual graph).
The whole graph is stored in a mono-dimensional array,
each entry representing a node. The links are indices in
the array. This allows us to randomly access a single
node in a more proficient way compared to an
implementation using pointers.
Since the core of the algorithm implementation can be
found inside the class Triangle, we can actually tell that
the class methods are the operations on which the
algorithm relies on. What is really interesting to analyse
is the search method that performs a recursive visit of
the graph.
The internal structure of the Triangle class is depicted
in Figure 3. The main information on connectivity is
stored in the integer triplet (Vert1, Vert2, Vert3) that is
used to find the positions of the triangle vertices in the
coordinate vector. To easily access the neighbour
triangles we keep a pointer to the three adjacent
triangles (in this case we mean edge adjacency).
Following these links we can pass in one step from one
triangle to the adjacent one, or, thinking about the
graph, from one node to another which is linked to it.
Recall that, at most, each node in the graph has three
neighbour nodes, that is three departing/arriving links
(our graph is not oriented). We can thus randomly
access the triangle list and traverse the graph using the
same data structure that is, at the same time, a linear
array with the properties of a double linked list.
Since we need to mark each link in the graph as solid or
dashed, we associate a Boolean flag to each link: 1 for
solid and 0 for dashed. Each Triangle object has also
the integer identifier of the stripe it belongs to. The
identifiers are unique for each strip.

4. Implementation details
Our tunneling algorithm uses a strategy that we called
dynamic update of the identifiers. It does not actually
dynamically change the stripe identifiers associated to
each node, but also the flags for each link traversed by
the searching procedure. Since the traversal does not
always get us to find a complementable path, the
dynamic update should consider the possibility of
undoing the whole traversal (both on the identifiers and
the colours of the links). We should commit the
modification only when we are sure to have found a
correct path. To support this, in the Triangle class, we
duplicate the flags associated to the links (three for each
node). These temporary flags are used only during the
complement attempt, when the path is found, the
changes are committed and the flag reset. Since each
node of the graph can be visited as primary only once,
also each link state can be changed once, and thus we
need no more than one temporary flag per link.
What about the identifiers? Since each node can be
visited as secondary as many times as possible, the
identifier can change the same number of times. If we
want to be able to undo the whole operation we need to

use a stack of identifiers. We push a new identifier
when we pass trough the node and we pop the top
identifier during the undo process. Note that we are not
obliged to abort the whole traversal, we can backtrack it
to a consistent state and follow a different path.
Let us now see a description of the most relevant
methods of the class Triangle.
The method IsTerminalNode(…) returns a
boolean: 1 if the triangle is strip terminal and 0 if it is
not. Its implementation is based on an analysis of the
colours of the links to the node: less than two solid
links means that the node is terminal, two solid links
means that the node is non-terminal, three solid links
are not possible by construction. This allows the
method to work correctly whatever changes to the
graph we made.

Data
Vert1,Vert2,Vert3
StripeID

TmpStripeID
Methods
IsTerminalNode(…)
GetNextNodeInStripe(…)
SetTmpID(…)
RestorePrevTmpID(…)
ChangeID(…)
SearchTunnel(…)

Class Triangle

01Node C
10Node B
01Node A

Tmp
FlagFlagNode Link

Figure 3: A more detailed example of the class

Triangle.
The method GetNextNodeInStripe(…) returns
the next triangle in the strip. If the node is non-terminal
we can go up and down the strip and thus there are two
next triangles, the direction os a parameter of the
method.
We use the methods GetTmpID(…), SetTmpID(…),
RestorePrevTmpID(…) and ChangeID(…) to
manage the temporary identifiers during the tunnel
search. The second one sets the identifier to a
temporary value and the third set it back to the previous
one. Note that setting the identifier means to set also the
identifiers of the nodes linked to the changed node by a
chain of solid links. Both methods follow this identifier
propagation strategy. The last method is the one used to
commit the changes when we find a good path.
The SearchTunnel(int p) method is the actual
activation of the searching mechanism. The parameter
p is the maximal tunnel length we want to have. It is a
recursive method and the recursive step is performed
decrementing p. The search strategy so defined is

actually a breadth-first search in the graph and takes
into account only the path satisfying the imposed
bounds. It can change and, in case no path is found,
restore the state and restart using the structure and
methods described before.
5. Conclusions and Future Work

We described a stripification algorithm based on a
simple topological operation on the dual graph of the
triangle mesh that is robust and easy to use. We focused
our attention here on the data structures used and on the
implementation details. The results obtained, which we
still consider preliminary, make us confident that we
shall be able to implement a version of the algorithm
capable of operating also on CLOD meshes. It could be
used to repair the inconsistencies in the stripification of
an LOD when inserting new triangles. The choice of
the search seeds is still an open issue. We plan to
elaborate on strategies different from the current ones
that choose randomly the starting node and move at
random in the graph. One goal of such a strategy should
also be the generation of strips being as sequential as
possible, to accommodate the current requirements of
the graphics libraries.

We also plan to investigate the limits of the
stripification algorithm when applied to huge meshes,
eventually adopting an out-of-core scheme allowing the
stripification of meshes of any size. This will obviously
result in a major reconsideration of both supporting
data structures and implementation strategy, to be able
to adapt the algorithm to work on the partition of data
present in core memory at a given moment in time.
Currently the algorithm is, in principle, global over the
dataset (the graph), splitting it in parts could bring one
of two branches: a localization of the search strategy
that, nowadays, is totally unclear whether it could be
feasible or not, or a pagination strategy for the dataset.

6. References
[Ark96] ARKIN, E. M., HELD, M., MITCHELL, J.

S. B., AND SKIENA, S. S. Hamiltonian
triangulations for fast rendering. The Visual
Computer 12, 9 (1996), 429–444.

[Cho97] CHOW, M. M. Optimized geometry
compression for real-time rendering. In
IEEE Visualization ’97 (Nov. 1997), pp.
346–354.

[ElS99] EL-SANA, J. A., AZANLI, E., AND
VARSHNEY, A. Skip strips: Maintaining
triangle strips for viewdependent rendering.
In IEEE Visualization ’99 (Oct. 1999), pp.
131–138.

[ElS00] EL-SANA, J., EVANS, F., KALAIAH, A.,
VARSHNEY, A., SKIENA, S., AND
AZANLI, E. Efficiently computing and
updating triangle strips for real-time
rendering. Computer-Aided Design 32, 13
(Oct. 2000), 753–772.

[Est02] ESTKOWSKI, R., MITCHELL, J. S. B.,
AND XIANG, X. Optimal decomposition of
polygonal models into triangle strips. In
Proceedings of the eighteenth annual
symposium on Computational geometry
(2002), ACM Press, pp. 254–263.

[Eva96] EVANS, F., SKIENA, S. S., AND
VARSHNEY, A. Optimizing triangle strips
for fast rendering. In IEEE Visualization ’96
(Oct. 1996), pp. 319–326.

[Gar76] GAREY, M. R., JOHNSON, D. S., AND
TARJAN, R. E. The planar hamiltonian
circuit problem is NP-complete. SIAM
Journal of Computing 5, 4 (Dec 1976), 704–
714.

[Hop99] HOPPE, H. Optimization of mesh locality
for transparent vertex caching. In
Proceedings of SIGGRAPH 99 (Aug. 1999),
Computer Graphics Proceedings, Annual
Conference Series, pp. 269–276.

[Ise01] ISENBURG, M. Triangle strip compression.
Computer Graphics Forum 20, 2 (2001),
91–101.

[Por03] PORCU, M. AND SCATENI, R. An
Iterative Stripification Algorithm Based on
Dual Graph Operations. In Proceedings of
Eurographics 2003 (short presentations)
(Sep. 2003) pp. 69–75.

[Spe97] SPECKMANN, B., AND SNOEYINK., J.
Easy triangle strips for TIN terrain models.
In Canadian Conference on Computational
Geometry (1997), pp. 239–244.

[Ste01] STEWART, A. J. Tunneling for triangle
strips in continuous level-of-detail meshes.
In Graphics Interface (June 2001), pp. 91–
100.

[Xia99] XIANG, X., HELD, M., AND MITCHELL,
J. S. B. Fast and effective stripification of
polygonal surface models. In 1999 ACM
Symposium on Interactive 3D Graphics
(Apr. 1999), pp. 71–78.

