
Client-Server Infrastructure for Interactive 3D
Multi-User Environments

Ingo Soetebier
Fraunhofer IGD
Fraunhoferstr.5

 64283 Darmstadt, Germany

ingo.soetebier@igd.fhg.de

Horst Birthelmer
Fraunhofer IGD
Fraunhoferstr.5

64283 Darmstadt

Jörg Sahm
Fraunhofer IGD
Fraunhoferstr.5

64283 Darmstadt

joerg.sahm@igd.fhg.de

ABSTRACT

Multi-user environments, using 3D graphics, more and more find their way into areas like e-business,
entertainment and cooperative work. Due to the increasing capabilities of hardware and network, even smaller
devices, like laptop computers or PDAs, become suitable for the visualization of 3D graphics. A possible
approach for distributing the 3D information is to use a server, which provides all clients with the necessary
data. In this paper we define a client-server software framework, which supports the design of three-dimensional
multi-user environments. We define requirements of the software infrastructure for a client-server framework
that can provide a number of different 3D scenes, each with several users. The number of 3D scenes and users
should be only limited by the hardware. Furthermore, we present a solution for each requirement and finally we
discuss the results.

1. INTRODUCTION
Since the capabilities of 3D hardware and network
capacity increase in very short cycles while the prices
are dropping rapidly, there's a big demand for
interactive 3D environments. Areas for 3D
environments are engineering and design where users
working on the same projects can review and discuss
results in a 3D environment.

To support the above-mentioned scenarios, a power-
ful software framework for building the client-server
environment is necessary.

1.1 Related Work
Three-dimensional multi-user environments heavily
depend on network connections. There are papers
from Funkhouser [Fun96b] and Macedonia et al
[Mac97a], which focus on the classification of
network connections and network topology.

There are some multi-user environments, which are
based on multicast peer-to-peer communication.
NPSNET [Mac94b] is an example for such an virtual
environment. It is designed for a large number of
users in military training and is based on the DIS
protocol that uses multicast IP. There is no central
server in NPSNET. Bamboo [Wat98b] was developed
as an advancement to NPSNET. It supports a
dynamic extensibility at runtime. In Bamboo this
feature is used to supply network protocols per object
to achieve optimal performance of transmission. A
virtual reality system using also multicast peer-to-
peer communication is the Distributed Interactive

Virtual Environment (DIVE) [Car93a]. Environments
used by DIVE are stored in databases, which are
replicated on each client. The Scalable Platform for
Large Interactive Network Environments (Spline)
[Wat96a] is a toolkit for creating large-scale multi-
user environments. Its world model is split up into
several so-called 'locales'. Communication is done
via multicast peer-to-peer connections. A remarkable
application built with Spline is DiamondPark.

Like our approach, there are some multi-user
environments, which are based on a client-server
communication. An example is the AVIARY VR
system [Sno94a] presented by Snowdon et al. Virtual
Society [Lea97a] presented by Lea et al is another
client-server based virtual environment. It is an
application that uses 3D worlds defined with VRML
and an employed communication protocol called
Virtual Society Client Protocol (VSCP). The MR
ToolKit [Sha93a] is a programming toolkit using a
client-server based shared memory abstraction.

The Network Graphics Framework (NGF) [Sch99a]
is an adaptive framework for transmitting 3D
graphics over networks. Like our approach, it
considers several properties, like capabilities of
network, server and client or user preferences. It is
not only designed for virtual environments but for
general transmission of 3D graphics over networks.

Benford et al [Ben01a] present some general research
on virtual environments; Meehan [Mee99a]
presented a survey of existing virtual environments.

2. REQUIREMENTS
In this section we identify the requirements for the
client-server software framework. On an abstract
level we describe what the software framework
should be able to do and why it should do it.

Generally, we have the following situation: There is
an existing 3D world, represented in an arbitrary data
format. Furthermore, there is software, that can
handle the 3D world data, e.g. read it from a
database, and there is software that can handle the
visualization and the interaction of the users.

To create a complete 3D client-server environment,
the software framework should fulfill the following
requirements: It should transfer scene data to the
client and it should be able to transfer messages and
control information between client and server and
between different clients. The framework should also
be able to handle multiple 3D scenes and multiple
users.
To achieve this, the following properties of the
client-server software framework have to be
discussed:

Scalability: The server software should be scalable
in terms of hardware resources and in number of
supported scenes and clients. It should support multi-
processor hardware and multiple network
connections. The number of supported scenes and
clients should be only limited by hardware.

Supported Objects: The client-server framework
should be independent of a certain data format or a

certain data structure for representation of the scene.
The interface to the client-server framework should
be flexible enough to support various kinds of
information.

Interactivity: The client-server framework should
support interactive 3D scenes. This comprises
navigation and interaction between the user and
objects in the scene, like collision detection, creating
new objects or removing objects. Furthermore it
should be possible to implement application specific
interaction.

Client Adaptivity: The client-server framework
should support techniques to adapt to the available
resources, like network bandwidth and computing
power, optimally.

3. SOLUTION
In this section we describe the solutions of the
requirements that we defined in the previous section.
The solutions will be general solutions, which means
that they will not depend on a special environment,
like programming language or an underlying
operating system.

3.1 Overview
Figure 1 shows an overview of our framework. Each
box corresponds with one process. The server
process receives requests from the network and
manages the scene processes. One scene process
manages one 3D environment and the users, which
are connected to the scene. Each user has its own
process, managing the network connection and data
transfer using the plugins and the multiplexer. For
each object type that can be transmitted to the client
there is a plugin. For example, if the 3D world
consists of textured triangle meshes, there would be a
plugin for transmitting the triangle meshes and a
plugin for transmitting the textures. Each plugin
creates a data stream that is mixed by the multiplexer
to one data stream. The multiplexer can be
configured that the transmission of an triangle mesh

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG POSTERS proceedings
WSCG 2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency Science Press

ServerClient
Fixed
Port Registration

Scene 1 Scene n

Data

Communication

Data

Data

Data

Communication

Communication

Communication

...

start / connect

connect

Scene request

...

Communication Data

Demultiplexer

Figure 1: Overview of the framework's architecture

and the according texture end at about the same time.
If the amount of data of the texture is bigger than the
amount of data of the triangle mesh, then the
multiplexer will transmit more texture data in the
outgoing data stream. To have easier access to the
data of the 3D world, the plugins and the multiplexer
should be represented by threads.

On the client side, there is one process managing the
network connection, the demultiplexer and the client
plugins. The incoming data stream will be
demultiplexed and distributed to according plugins in
order to get the original data objects. After that the
application, using the client-server framework, is
responsible to visualize or to process the data
objects.

3.2 Connecting to the server
The server process receives a request from the
network. Like a web browser always connects the
web server at port 80, the connection will be also
addressed to a fixed port. The request contains an
identifier for a certain scene. The server process
checks this request and returns a new connection,
connecting the client to the process, which handles
the requested scene. If the process for the scene is
not running, the server process will start it at first.
When the client connects to the scene, it will transmit
information about its capabilities over the
communication connection. In addition the server
starts a bandwidth test in order to determine the
capabilities of the network between server and client.
With this information the multiplexer on server side
and the demultiplexer on client side can be
configured optimally. After this configuration the
transmission is started.

These are the tasks of the server process:

Receive requests from the network
Check the requests
Dispatch the request to the according scene
process
Start the scene process with the first request
Manage all scene processes

As concurrency strategy we choose a thread-per-
request strategy. Hu and Schmidt [Hu99a] discuss
different strategies for web server. A request at the
server creates a thread that processes it. This thread
checks, if a valid scene is requested and dispatches
the request to the appropriate scene. If the scene is
not running, which means the user is the first user
that requests that scene; this thread will start a new
process running the requested scene. Since the server
process manages all running scenes it gets a
reference to the newly started scene. After the scene
is running and the user is successfully connected to
the scene, the thread terminates. Then the scene

process starts a new thread for each user. This thread
first receives the information about the client s
capabilities and then performs a network bandwidth
test. These informations are needed to load the
plugins dynamically, because only those plugins will
be loaded, which transmit data according to the
client's capabilities. For example, if the client cannot
display textures, the plugin for transmitting textures
is not be loaded, because textures are not transmitted.
The information about the client's capabilities and
network bandwidth are also needed to configure the
multiplexer optimally. Information for
demultiplexing is included in the data stream,
transmitted to the client. So the demultiplexer does
not need to be configured.

In our implementation we also use this information to
optimize the data stream in the following way: The
geometric data (triangle meshes) and the textures are
stored in a progressive data format. This means, that
a basic representation, which is rather coarse, will be
transmitted first followed by refinements of the basic
representation. Knowing the capabilities of the client
means:

The transmission can be stopped if the display
resolution of the client is reached.
The visual representation can be optimized. If
the client is not able to display details of an
object as a triangle mesh, the details can be
substituted with a texture.

This optimization requires among other things a
special representation of the 3D World and some
logic to configure the multiplexer. To keep the client-
server framework flexible and usable for different
kind of 3D world representations, these optimizations
are not within the scope of the framework.

3.3 Communication
The task of the communication connection is to
transmit information between:

The client and the scene, e.g. navigation
The scene and the client, e.g. collision detection
Two or more clients, e.g. chatting
Client and multiplexer, e.g. configuration

To accomplish this task, a message consists of an
address of a receiver and the message itself. Like the
plugins, the communication module runs as an extra
thread in the scene process, respectively in the client
process. It dispatches the message according to the
address the message contains. It is application-
specific, interpreting the content of the message.

3.4 Summary
Here we summarize our solution, to meet the
requirements, defined in the previous section.

Scalability: In the area of server, multi-processor
hardware is a often used approach to increase the
computing power by hardware. Our client-server
framework is designed to use multi-process and
multi-thread techniques. So it is able to completely
utilize multi-processor hardware. On single-
processor hardware, this design will result in a better
utilization of the resources provided by the operating
system.

Supported Objects: To be independent of a special
data format, we use the concept of plugins. Plugins
have a fixed defined interface and are dynamically
loaded at runtime. There is plugin for each data,
respectively object type that will be transmitted from
server to client. This concept has the advantage that
the priority of certain object types can be adjusted.
This gives the opportunity to optimize the
transmission of data.

Interactivity: Interactive 3D scenes are only
possible, if information of user input, like navigation,
can be transmitted back to the scene. The client-
server framework provides an extra communication
connection for this. The content of the transmitted
message has to be interpreted by the application to
keep the over-all design of the framework as flexible
as possible.

Client Adaptivity: The client-server framework
offers a network bandwidth test, to provide infor-
mations that can be used for adapting the data
transmission. Additionally the client can offer
information about its capabilities to optimize the
adaptation. Nevertheless, the actual adaptation has to
be integrated in the complete application using this
framework.

4. CONCLUSION
In this paper, we presented a framework for client-
server based, interactive, 3D environments. The
framework is designed for scalability, it is
independent of the data format for the 3D world, it
supports communication between all parts of the
system and it offers possibilities for optimizing the
data transmission. The framework is suitable for
powerful workstation as client and is also suitable for
smaller devices. The described framework is used in
the project WAP for graphical objects funded by the
Heinz-Nixdorf-Foundation, basing on the real-time
and co-operative visualization of large, dynamic, and
interactive 3D scenes on different, possibly mobile
devices.

There are still issues that can be improved.
Scalability could be improved by distributing the
server part of the application on a cluster of
computers. Since the scene processes do not share
any data with each other and are only loosely

connected to the server process, it might be possible
to run them on different computers. Issues regarding
security are also not considered yet. When
transmitting information using the internet, security
functions might be useful to avoid misuse.

5. REFERENCES
[Ben01a] S. Benford, C. Greenhalgh, T. Rodden, J.
Pycock, ''Collaborative Virtual Environments'',
Communications of the ACM}, Vol. 44, No. 7, 2001.

[Car93a] C. Carlsson, O. Hagsand, ''DIVE - a Multi-
User Virtual Reality System'', IEEE Virtual Reality
Annual Symposium, 1993.

[Fun96a] T. Funkhouser, ''Network Topologies for
Scalable Multi-User Virtual Environments'', IEEE
Virtual Reality Annual International Symposium
(VRAIS '96), 1996.

[Hu99a] J. Hu, D. Schmidt, ''JAWS: A Framework
for High-performance Web Servers'', Domain-
Specific Application Frameworks: Frameworks
Experience by Industry, M. Fayad and R. Johnson
(Editors), John-Wiley, 1999.

[Lea97a] R. Lea, Y. Honda, K. Matsuda, O.
Hagsand, M. Stenius, ''Issues in the Design of a
Scalable Shared Virtual Environment for the
Internet'', Proceedings of the HICSS '97, 1997.

[Mac97a] M. Macedonia, M. Zyda, ''A Taxonomy for
Networked Virtual Environments'', IEEE
Multimedia, Vol. 4, No. 1, 1997.

[Mac94b] M. Macedonia, M. Zyda, D. Pratt, P.
Barham, S. Zesswitz, ''NPSNET: A Network
Software Architecture for Large Scale Virtual
Environments'', Presence, Vol. 3, No. 4, 1994.

[Mee99a] M. Meehan, ''Survey of Multi-User
Distributed Virtual Environments'', Course Notes:
Developing Shared Virtual Environments,
SIGGRAPH 99, 1999.

[Sch99a] B. Schneider, I. Martin, ''An Adaptive
Framework for 3D Graphics over Networks'',
Computers \& Graphics, Vol. 23, No. 6, 1999.

[Sha93a] C. Shaw, M. Green, J. Liang, Y. Sun,
''Decoupled Simulation in Virtual Reality with the
MR Toolkit'', ACM Transactions on Information
Systems, Vol. 11, No. 3, 1993.

[Sno94a] D. Snowdon, A. West, ''The AVIARY VR-
System. A Prototype Implementation'', 6th ERCIM
Workshop, 1994.

[Wat96a] R. Waters, D. Anderson, J. Barrus, D.
Brogan, M. Casey, S. McKeown, T. Nitta, I. Sterns,
W. Yerazunis, ''DiamondPark and Spline: A Social
Virtual Reality System with 3D Animation, Spoken
Interaction and Runtime Modificability'', Mitsubishi

