Real-Time Terrain Visualization on PC

Jan Vanék
Faculty of Informatics and Management
University of Hradec Kralové
Vita Nejedlého 573
500 03, Hradec Kralové, Czech Republic

janvan@post.cz

Bruno Jezek
Purkyné Military Medical Academy
PO.Box 35
TrebeSska 1575
500 01, Hradec Kralové, Czech Republic

jezek@pmfhk.cz

ABSTRACT

Terrain visualization is a task taking place in all geographic information systems (GIS). Very large datasets are
often processed and visualized in real-time. Although the performance of hardware continually increases, it is
necessary to optimize the form and the amount of 3D terrain information to obtain sufficient framerates during
visualization. This article deals with choosing the appropriate terrain representation and a suitable method for
large terrain data management. Proposed optimizations were successfully tested in implementation of real-time
terrain visualization using a common graphic card for hardware acceleration.

Keywords

terrain visualization, real-time rendering, hardware acceleration, geographic information systems, level of detail

1. INTRODUCTION

As geographic information systems (GIS) are
being used widely by many business and public
institutions for a great variety of purposes, it is
becoming quite urgent to extend visualization
techniques employed in existing GIS. Although
commonly used two-dimensional maps carry large
amounts of information, the actual terrain shape is not
evident. Reading the shape from contour lines and
using it to make qualified decisions requires several
years of practice.

Three-dimensional visualization of geographical
data provides information about the shape of the
terrain and locations of other objects on a map
quickly and easily. An interactive system with real-
time 3D terrain rendering is much more useful for
users.

At the beginning it is advisable to specify the
requirements and restrictions of the software for
terrain visualization:

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG POSTERS proceedings
WSCG’2004, February 2-6, 2003, Plzen, Czech Republic.
Copyright UNION Agency — Science Press

1. The rendering must be done in real-time.
Only framerates above 15 frames per second
are considered to be sufficient.

2. The software must handle terrain hundreds
of kilometers in size with a detail of ten or
less meters.

3. These goals must be met on consumer-level
hardware. Expensive professional hardware
must not be required. On the other hand, the
software should take advantage of what
modern hardware has to offer.

2. TERRAIN REPRESENTATION

One of the first methods of terrain rendering —
voxel-based terrain rendering [Kau99] — is an
extension of volume data rendering. Although
successful real-time voxel-based terrain rendering
engines exist [Outcast], this terrain representation is
not suitable for our purpose because there is no
consumer hardware capable of real-time volume data
rendering.

Within other representations the only truly real-
time renderable scene representation is a triangulated
network, which is for many reasons perfectly suitable
for terrain visualizing. It can be simply rendered
using z-buffer which is hardware accelerated by the
vast majority of graphic cards available to a common
consumer.

Even with a triangulated network as a
representation, we have some options to choose from.
A triangulated irregular network (TIN) can be used to

represent any arbitrary shape including cliffs or
overhangs but geometries of such formations are not
stored in GIS databases and because of the scale of
the considered terrain these formations can be
ignored.

A regular network — a triangulated height-map
for example — is another option. We have decided to
represent the terrain by a height-map because of its
several advantages. A decrease in the storage
capacity required for saving terrains is one of the
most important. If a triangulated height-map of
4096%4096 points is stored in the form of a TIN with
32-bit precision and with the most universal triangle
description (3 indices per each triangle), it will
require at least 575MB instead of 64MB for the
height-map itself (32-bit precision as well).

Another advantage of height-maps comes from
modern methods of acquiring geographic data.
Satellite and aerial measurement systems produce
height-maps and if such data is not available it will be
possible to reconstruct the height-map from contour
lines [Gol02].

Representing the terrain as a height-map
simplifies the detection of collisions between moving
objects (including camera) and the terrain. For every
rendered frame each object travels into a new
position. The software detects collision by comparing
the altitude of an object and the altitude interpolated
from the height-map and this is done with constant
complexity (i.e. in O(1)).

Height-Map Triangulation

In order to render a terrain in real-time with
a sufficient framerate we are using hardware
acceleration via Direct3D and therefore we must
compile the terrain representation into compatible
data structures — vertex and index buffers.

A vertex buffer is an array of structures
(records) describing each vertex. A structure
sufficient for our purpose consists of three 32-bit
floating point numbers for the vertex position and
another three for the vertex normal.

An index buffer describes how vertices shape
triangles. It contains indices pointing to the vertex
buffer. Indices in an index buffer can be organized in
several schemes: a triangle list, a triangle fan or a
triangle strip.

A triangle list is universal as it may describe any
ordering of triangles. Each triangle is represented by
three indices. A triangle fan is more -efficient
considering the number of indices but it requires a
certain organization of the triangles. All the triangles
must have one vertex in common; each triangle is
adjacent to two triangles and the adjacency edges
must contain the joint vertex. The first index in the
index buffer points to the joint vertex; any other two
indices specify a triangle.

A height-map triangulation cannot be described
as one triangle fan and therefore the index buffer
must be split into parts (one part per each triangle
fan) that are processed individually. This creates
overhead expenses because in Direct3D 8§ a function
must be called to render each such part. Under
OpenGL creating a display list hides the overhead
(such as additional data structures management)
inside the OpenGL implementation. The number of
triangle fans covering a m xn height-map is
%-(n -1)-(m-1). To triangulate a whole height-map
with triangle fans, both m and » must be odd.

A triangle strip is even more efficient in terms of
the number of indices and definitely more efficient
considering the number of parts. Any three successive
indices in the index buffer describe one triangle; to
add a triangle to the strip one additional index is
required (see Figure 1). The index buffer is broken
into m-1 parts and thus the overhead costs are
significantly lower than in the case of a triangle fan,
but they are still present.

All the overhead, which comes from processing
an index buffer split into parts, must be handled by
the CPU. Since a height-map can’t be efficiently
rendered without the overhead costs of using triangle
fans or triangle strips, we came up with an idea of
replacing the overhead with another form of
additional computational expenses.

Triangulation

Number of indices

Number of parts

m=n=1025

description Index buffer size I Number of parts

Triangle list 6:(n-1)-(m-1) 1 24 MB 1

Triangle fan 2(n-1)(m-1) +(n-1)(m-1) 10 MB 262144

Triangle strip 2-n-(m-1) m-1 8.008 MB 1024
Degener. triangles 2n+2)@m-1) 1 8.016 MB 1

Table 1: Overview of triangulation descriptions

11 12 13 14 15
Index buffer'

]1[6|2},7[3|8|4|9|5|10 6[11]7]12[8]

~ et

Number of indices: 2-n-(m - 1)

Figure 1: Triangle strip

We have extended the triangle strip so that the
whole height-map triangulation can be described as
one triangle strip. It can be achieved by adding four
triangles (two indices) to each row. These triangles
are degenerate as at least two of their indices point to
one vertex and therefore they are not visible. This
way the additional CPU load was replaced by a
lighter additional GPU load. A well designed GPU
should recognize a degenerate triangle and skip it. So
the overhead of adding degenerate triangles is
minimal.

Figure 2 shows the added indices and triangles.
One index (and thus one triangle) is appended in
order to maintain a correct vertex orientation.
Otherwise the backface culling would remove the odd
rows. With the backface culling switched off only one
additional index and three triangles are needed.

As we can see in Table 1 the triangle strip with
degenerate triangles is the most efficient height-map
triangulation description. During our tests on a 1GHz
machine equipped with GeForce4 Ti 4400, switching
from the triangle strip to the triangle strip with
degenerate triangles doubled the framerate on some
terrains; all tests showed an increase in the framerate.

Index buffer:

[1]6]2]7]3]8]4]9]s5(1010,10]15]10]14

|9]13] 8 [12] 7]11] 6 [11]11]

Number of indices: (2-n + 2)-(m - 1)

Figure 2: Triangle strip with degenerate triangles

Let the height-map have m rows and »n columns.
The vertex indices then range from 0 to mwn- 1.
Index buffer construction is described by the
following code fragment:

for (int i=0; i<m-1; 1i++) {
if (1%2) |
for (int j=n-1; 7>=0; j--) {
add_index ((i+1)*n+j);
add_index (i*n+7j);
}
add index ((i+l)*n)
add index ((i+1l)*n)
}
else {
for (int j=0; j<n; j++) {
add index (i*n+j);
add index ((i+1)*n+j);

}
add_index ((i+2)*n-1);
add_index ((i+2)*n-1);

}

The number of indices in the index buffer is
(2:n+2)(m-1) which equals the number of
executions of the subroutine add_index.

3. LARGE HEIGHT-MAP

An optimal terrain representation itself does not
suffice for real-time rendering. A triangulation of a
height-map of 10 000* elements (a 100* km terrain
with a 10 m detail) consists of around 200 million
triangles and in the most compact renderable form
described above, it takes up over 3 GB of memory (of
the graphics card). To maintain a framerate over 15
fps the GPU would have to process more than
3 billion triangles per second. Such a hardware
configuration is not likely to appear in the foreseeable
future. On top of that, the requirements are growing
more rapidly then the hardware performance.
Therefore we have to reduce the number of displayed
triangles.

The most complex and general algorithms of
triangulation reduction (e.g. [Pup96]) are not suitable
for hardware accelerated rendering. These algorithms
work with individual vertices, edges and triangles.
Therefore the geometry is often changed and these
changes must be transferred from the system memory
to the memory of the graphics card.

Reducing the complexity of a larger group of
triangles is more suitable for hardware accelerated
rendering as the change of geometry is made less
often. Rules for deciding whether to remove a vertex
or not are not applied on every vertex but on a
relatively large group of vertices and thus CPU
requirements are many times lower.

A height-map representation has another
advantage — it can be simply divided into overlapping
patches. Each patch covers 2" + 1 x 2" + 1 vertices so
that it is easy to reduce the number of triangles by
removing odd vertices (see Figure 3). The height-map
is split into » x s patches and thus its size must be
r2"+1x 52"+ 1 or else it must be resampled.

Level 2
Figure 3: Patch level of detail

Level 1 Level 0

The result of removing all odd vertices from a
patch of 2"+ 1x2"+1 vertices is a patch of
2" '+1x2""'+1 vertices. This patch can be
reduced exactly the same way and so on down to a
patch of 2 x 2 vertices. So a 2" + 1 x 2" + 1 patch can
be rendered in n+ 1 levels of detail — patches of
k41 x2f+1 vertices; k= 0,...,n specifies the level
of detail (LOD) of the patch.

LOD is selected depending on the patch distance
from the camera position. If dist is less than mindist
then k= n, else if it is greater than maxdist then the
patch is at level 0, else the LOD is given by the

dist—mindist)“-‘P
maxdist—mindist

following expression: k = n~<1 -
By specifying mindist, maxdist and exp a user can set
the overall scene detail.

Cracks occur on borders of adjacent patches of
different levels of detail. To remove them the
geometry must be changed. The index buffer for each
LOD is precomputed and thus all the patches use the
same index buffer per LOD. This improves
performance. Therefore the cracks are removed by
modifying the vertex buffer. Vertices of the patch of
the greater LOD that do not match vertices in the
patch of the lower LOD are moved to the vertices that
match (see Figure 4).

Figure 4: Crack removal

View-frustum culling is another method for
reducing the number of displayed triangles. The
simplest way to implement it is to create an axis-
aligned bounding box (AABB) for the patch, project
the AABB to the screen space and then check
whether the AABB intersects the view-port rectangle.

4. RESULTS

All the proposed solutions were implemented
and successfully tested in a real life application
employed at the Purkyné Military Medical Academy.

During preparations for field training, students have
used GIS in the common two-dimensional form and
faced the problem of recognizing the terrain shape.
The request for 3D visualization was quite obvious.

We have tested different height-map resolutions
from 10257 up to 20481 vertices on several
computers ranging from a |GHz machine with nVidia
GeForce4 Ti to a 3GHz one equipped with ATI
Radeon 9800. For each map and hardware
configuration we were able to set the LOD
parameters so that the average framerate was above
15 fps and the overall detail still made a good
impression. A height-map of 20481% vertices (split
into 80* patches of 257% vertices) was rendered with
an average of around 850 000 triangles per frame to
keep the scene in a sufficient detail.

5. CONCLUSION

Solutions of several problems concerning real-
time terrain visualization on common hardware
accelerated graphic cards are described in this work.
As an optimized terrain representation we have
designed the extended triangle strip with degenerate
triangles, which is the most efficient height-map
triangulation description.

A method for dividing the whole terrain into
regular patches with different levels of detail is
proposed for large height-maps. The problem of
connecting the patches is solved.

All the proposed optimizations were
implemented and tested on several computers with
common hardware configurations.

6. ACKNOWLEDGMENTS

The authors would like to thank the Graphics
Group of the University of Hradec Kralové,
especially Associate Professor Antonin Slaby for
funding this work.

7. REFERENCES

[Gol02] Dakowicz, M., Gold, C. Visualizing Terrain
Models from Contours - Plausible Ridge, Valley
and Slope Estimation. Proc. International
Workshop on Visualization and Animation of
Landscape, 2002.

[Kau99] Kaufman, A., Qu, H. and Wan, M. Virtual
Flythrough Over Voxel-Based Terrain. Proc.
IEEE Virtual Reality '99, pp. 53-60, 1999.

[Outcast] Engine for the computer game Outcast
developed by Appeal, published by Infogrames,
http://www.outcast-thegame.com, 1999.

[Pup96] Puppo, E. Variable Resolution of Terrain
Surfaces. Proc. Eighth Canadian Conference on
Computational Geometry, 1996.

