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aplikace

V Plzni, 2013 Jana Černá
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Abstrakt

V předkládané diplomové práci jsou studovány po částech kružnicové spline křivky, které
jsou utvořeny z biarc křivek. Biarc je křivka složená z dvou oblouk̊u kružnic, které jsou
napojeny se zachováńım G1 spojitosti. Hlavńım ćılem této práce je zkoumat teorii a ap-
likace biarc̊u v geometrickém modelováńı a popř́ıpadě některé aplikace vylepšit. Nejprve
jsou uvedeny obecné teoretické poznatky o biarc křivkách v rovině a v prostoru. Dále je
ukázáno, jak biarc křivkou realizovat Hermitovu interpolaci, tj. jak interpolovat dva body
s danými tečnými vektory v těchto bodech. Také je předvedeno, jak popsat biarc jako
NURBS křivku. Poté jsou porovnány r̊uzné volby napojovaćıho bodu a vliv této volby na
tvar a křivost výsledného biarcu. Dále je ukázána a analyzována aproximace dané křivky
se zadanou přesnost́ı pomoćı biarc̊u. Nakonec jsou realizovány některé aplikace biarc̊u v
geometrickém modelováńı.

Abstract

In this thesis we study piecewise circular spline curves that are formed by biarcs. Biarc
is a curve that is entirely composed of two circular arcs joined in a way that G1 conti-
nuity is preserved. The main goal of this thesis is to study the theory and application of
biarcs and eventually improve some of the applications in geometric modelling. First, we
present general theoretical facts about biarcs in plane and in space. Next, we show how
to interpolate set of points with given tangents by biarcs in plane and in space, and thus
get Hermite interpolation of the data. We also show how to describe biarc as NURBS
curve. Then we compare various choices of joining point and its effect on the shape and
curvature of resulting biarc. We also show how to approximate given curve with piecewise
circular curve consisted of biarcs when accuracy is given. Finally, we discuss and realize
some applications of biarcs in geometrical modelling.
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Introduction

Piecewise circular curve is a curve that consists entirely from circular arcs and straight
lines, which can be thought of as arcs with centre at infinity and infinite radius. They
are widely used in various industries for example for path planning of a robot, laser or
camera. They have also use in Computer Numerical Control (CNC) manufacturing, where
it is important to control precisely the speed of the tool along its path. Also, offsets of the
curve are used in the CNC machinig, since in many cases some part of the machine must
move at a given constant distance from the manufactured shape. This is why piecewise
circular curves with simple (analyticaly expressible) arc-length function are very suitable
in CNC manufacturing. To form piecewise circular curves we will use biarc curves that are
composed of two circular arcs with G1 continuity preserved at joining point. They were
firstly designed for shipbuilding industry in 1970 and provided the basic curve and hull
surface definition for the widely-used BRITSHIPS system (see [10]).

In the first chapter, we define biarc and discuss basic properties of biarc in plane and
in space. We present theorem that says how to choose a joining point of biarc in order to
preserve G1 continuity. Also, theorem about biarc in R3 lying on sphere is given. In the
second chapter, two constructions of biarc in plane are shown, with one of them extended
to space. Theorems about finding centre of circular arc in plane and in space are also
given. Third chapter presents construction of biarc in terms of NURBS curve. Formulas
for computing control polygon, weight and knot vector are given. In chapter four, we
demonstrate four choices of joining point forming so called ”equal-chord biarc”, ”parallel-
tangent” biarc, biarc that minimizes difference in curvatures of the two arcs and biarc
that is usefull for approximation of curve. In fifth chapter, we show how to approximate
curve with biarcs when accuracy is given. Also, example of approximation is shown and
order of approximation by ”equal-chord” biarcs is derived. In the last sixth chapter, we
demonstrate some applications of biarcs in geometric modelling. We show how to use
biarcs when approximating intersection of two natural surfaces, intersection of two rational
surfaces and when joining canal surfaces.
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Chapter 1

Theory of biarc curves

1.1 Biarc in plane

We begin with definition of biarc.

Definition 1.1.1. The two circular arcs a1, a2 are said to form a biarc interpolating given
oriented G1 data, represented by end points P1, P2 and unit tangent vectors t1, t2 if the two
circular arcs share one common end point J called joining point and satisfy the following
properties:

1. The arc a1 has the end points P1 and J, and t1 is tangent to a1 with orientation
corresponding to a parameterization of a1 from P1 to J.

2. The arc a2 has the end points J and P2 and t2 is tangent to a2 with orientation
corresponding to a parameterization of a2 from J to P2.

3. The two arcs have a common unit tangent vector at J, with orientation corresponding
to a parameterization of a1 from P1 to J and of a2 from J to P2.

t1
t2

P1
P2

t1 t2

P1
P2

Figure 1.1: Various biarcs for one point-tangent data pair depending on a choice of a
joining point. Joining points are shown in black.
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t1
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P1 P2

α

α
t1

t2

P1

P2 α

α

Figure 1.2: Locus of all possible joining points: general case (left) and degenerated case
for parallel tangent vectors (right).

We will call the pair (P1, t1), (P2, t2) a point-tangent data pair. Definition 1.1.1 pro-
vides five conditions. There are in general infinitely many biarcs satisfying these five
conditions for one point-tangent data pair. Biarc becomes unique after choice of a joining
point J. Following theorem tells us where we should look for this point (c.f. [16]).

Theorem 1.1.1. The locus of all possible joining points J is the circle l passing through
the points P1, P2 and having the same oriented angles with the vectors t1 and t2. If t1 = t2,
then the locus of all possible joining points degeneates into a straight line passing through
points P1,P2.

Proof of Theorem 1.1.1 can be found in [16]. Next theorem demonstrates how to find
the centre and the radius of this circle.

Theorem 1.1.2. Centre C of locus of all possible joining points can be obtained by in-
tersecting the bisectors of P1P2 and T1T2, where T1,T2 are end points of tangents t1, t2
shifted to P1,P2. Radius of the locus is the distance between the centre C and the point
P1 or P2, i.e.

r = ||C−P1|| = ||C−P2||. (1.1)

We can choose joining point J anywhere on this circle and the final curve will be G1

continuous (more detailed discussion on how to choose the joining point J will be given in
Chapter 4).

We clasify 2 types of biarcs with respect to their shape. Let us define the unit chord
vector between points P1,P2 as

e =
P2 −P1

||P2 −P1||
. (1.2)

Next, we denote φ1, φ2 oriented angles that tangent vectors t1, t2 form with the chord
vector, respectively.
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Definition 1.1.2. We call the resulting biarc C-shaped, if angles φ1, φ2 have the opposite
sign. We call the resulting biarc S-shaped, if angles φ1, φ2 have the same sign or if one of
them is 0.

Note: If both angles φ1, φ2 are zero, then biarc degenerates into a straight line between
P1,P2.

t1 t2
P1

P2

φ1

φ2

e

e

J t1

t2

P1

P2

φ1

φ2

e

e

J

Figure 1.3: C-shaped and S-shaped biarc.
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1.2 Biarc in space

In this section we will discuss existence and uniqueness of interpolating biarcs in R3, but
first we need further notation. Given two points P1,P2 ∈ R3, we denote the chord and
unit vector along the chord by

d = P2 −P1, e =
d

||d|| . (1.3)

Theorem 1.2.1. The rotation matrix that maps a tangent vector t into the (compatibly
oriented) vector t∗ at P1 of the circle with tangent t at P2 passing through the point P1 is
given by

R = 2e⊗ e− I, (1.4)

where ⊗ denotes outer product and I is identity matrix in R3.

For proof of Theorem 1.2.1, see [15]. Given a point-tangent data pair (P1, t1), (P2, t2)
we denote

t∗2 = R · t2. (1.5)

We clasify four circles

• C1 – the circle with tangent t1 at P1 passing through P2,

• C2 – the circle with tangent t2 at P2 passing through P1,

• C+ – the circle with tangent t1 + t∗2 at P1 passing through P2 (if t1 + t∗2 6= 0),

• C− – the circle with tangent t1 − t∗2 at P1 passing through P2 (if t1 − t∗2 6= 0).

We will call a pair of point-tangent data (P1, t1), (P2, t2) cocircular if C1 = C2 (i.e.,
biarc through this data is consisted of one arc). If the data are cocircular, we will call them

• compatible, if the orientation of circles C1, C2 is the same (and therefore t1 − t∗2 = 0
and C− is not defined),

• incompatible, if the orientation of circles C1, C2 is opposite (and therefore t1+ t∗2 = 0
and C+ is not defined).
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t1

t2

P1 P2

C1 = C2

t1 t2

P1 P2

C1 = C2

Figure 1.4: Compatible (left) and incompatible (right) data.

Elementary geometry demonstrates that any pair of point-tangent data that are not
cocircular define a unique sphere containing both points and with each tangent vector
contained in the corresponding tangent plane to the sphere. This sphere generated by
(P1, t1), (P2, t2), we will denote S. In the case that data (P1, t1), (P2, t2) are not cocircular
and lie in one plane, i.e. (t1 × t2) · e = 0, the sphere S is a plane that can be considered
as a sphere with infinite radius.

Theorem 1.2.2. When (t1× t2) · e 6= 0, the centre and the radius of the sphere S is given
by

C = P1 +
||d||
2

t
∗
2 × t1

(t1 × t2) · e
, (1.6)

r =
||d||
2

| sinα|
|(t1 × t2) · e|

=
||d||
2

√

1− (t∗2 · t1)2
|(t1 × t2) · e|

, (1.7)

where α is the angle between unit vectors t1 and t
∗
2.

Proof can be found in [15]. In the non-cocircular case all four circles C1, C2, C+, C− ex-
ist, pass through P1 and P2, and lie on the sphere S. The circles C+ and C− are mutually
perpendicular and bisect the angles between C1 and C2 (see Figure 1.5).

We will now discuss uniqueness of interpolating biarc. Let us suppose that (P1, t1),
(P2, t2) is a non-cocircular point-tangent data pair. How many biarcs are there interpolat-
ing this Hermitian data? This question is answered by the crucial theorem of this section
(c.f. [15], pp. 41).

Theorem 1.2.3. For a point-tangent data pair (P1, t1), (P2, t2) that is non-cocircular (i.e.
C1 6= C2), there is a nonempty set of possible joining points corresponding to compatibly
oriented arcs. For each joining point J the biarc is unique. Moreover

1. The locus of all possible joining points is a circle l going through P1 and P2.

2. All biarcs lie on the sphere S uniquely determined by (P1, t1), (P2, t2).
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t1 t2

P1 P2 t1

t2

P1

P2

Figure 1.5: Left: Point-tangent data pair and associated circles C1 (red), C2 (blue), C+

(black), C− (yellow). Right: Biarc and the sphere S.

3. There is a unique biarc through every point on the sphere S going through P1 and
P2 (i.e., the set of all possible biarcs is a simple covering of the sphere S).

One can also show that

• If (P1, t1), (P2, t2) is non-cocircular, then l is the circle C+.

• If (P1, t1), (P2, t2) is cocircular, then

(a) if the data is compatible, l is the common circle C+ = C1 = C2,

(b) if the data is incompatible, l is the sphere S passing through P1 and P2.

• The locus l is a straight line going through P1 and P2 if and only if t1 = t2 with
t1 · e 6= 0.

• The locus l is a plane going through P1 and P2 with normal vector t1×e if and only
if t1 = t2 with t1 · e = 0.

Thus, the matching locus of all possible joining points is the circle C+ whenever it
exists, and is otherwise a sphere S. The matching locus l has infinite radius if and only if
t1 = t2.

Figure 1.6 shows examples of biarcs for one point-tangent data pair with various choices
of joining point J. Note that all biarcs really lie entirely on one sphere S.
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t1

t2

P1

P2

Figure 1.6: Several biarcs with different choices of joining point (black points) on the locus
of all joining points (black circle).
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Chapter 2

Hermite interpolation using biarcs

2.1 Construction of biarc by finding centres of arcs

In this section we show how to obtain centres of arcs that form biarc in plane. Let us sup-
pose we have a point-tangent data pair (P1, t1), (P2, t2) we wish to interpolate by a biarc.
We choose some joining point J on the locus of all possible joining points (see Theorem
1.1.1 and 1.1.2).

Next theorem shows how to find centre and radius of the circle interpolating data
A,B, t ∈ R2, i.e. the circle that goes from A to B and has unit tangent vector t at A.

Theorem 2.1.1. Centre C of the interpolating circle from A to B with unit tangent vector
t at A can be found as

C = V +
||B−A||
2 tanα

n, (2.1)

where V =
A +B

2
, α = arccos (e · t) and n is vector perpendicular to unit chord vector e

(see Figure 2.1).

For proof see [4]. Radius of the circle can be again obtained as the distance between
the centre and some point on the circle

r = ||C−A||. (2.2)

The well known parametric equation of a circle with centre C = [xC, yC] and radius r
can be written as

x = xC + r cos t, (2.3)

y = yC + r sin t, (2.4)

where t ∈ 〈0, 2π). By the above description we find centres and radii of two circles inter-
polating a point-tangent data pair (P1, t1), (P2, t2). Next, we need to find desired parts
of each circle to form biarc. We need to find parameter interval 〈tS, tE〉, where tS is start

15



A

B

e

α
α

α

n C

V

t

Figure 2.1: Finding centre of interpolating circle in R2 (left) and in R3 (right).

parameter value and tE is end parameter value. We denote A = [xA, yA],B = [xB, yB].
Solving system

xA = xC + r cos t, (2.5)

yA = yC + r sin t, (2.6)

gives start value tS and solving system

xB = xC + r cos t, (2.7)

yB = yC + r sin t. (2.8)

gives end value tE. Equations (2.3) and (2.4) with t ∈ 〈tS, tE〉 describe a circular arc from
A to B with centre at C and radius r.

Figure 2.2 shows biarc that was constructed by this method for data

P1 = [0, 0], P2 = [3, 0.5], t1 = (0, 1), t2 =
1√
5
(1, 2), (2.9)

where the first arc is described by

x(t) = 0.796745 + 0.796745 cos t,

y(t) = 0.796745 sin t,

t ∈ 〈0.562121, 3.14159〉
and second arc by

x(t) = 2.21423 + 0.878518 cos t,

y(t) = 0.892885 + 0.878518 sin t,

t ∈ 〈3.70372, 5.81954〉 .

16



J
0.5 1.0 1.5 2.0 2.5 3.0 3.5

-0.5

0.5

1.0

1.5

P1

P2

t1

t2

C1

C2

Figure 2.2: Biarc constructed by finding centres of arcs.

Similar method can be used in R
3. Next theorem says how to find centre of arc through

points A,B with unit tangent vector t at A in R3.

Theorem 2.1.2. Centre C of arc through data A,B, t ∈ R
3 can be found as an intersection

of three planes S1,S2,S3, where

• S1 is a plane that contains point A and t is its normal vector,

• S2 is a plane that contains point
A +B

2
and chord vector e =

B−A

||B−A|| is its normal

vector,

• S3 is a plane that contains biarc, i.e. plane that contains A and its normal vector is
t× e.

Radius is again given by r = ||A−C||. Next, we would have to find two perpendicular
vectors in the plane that the circle lies in and then find parameter interval 〈tS, tE〉 to form
arc. However, it is unnecessarily complicated procedure and there is better way how to
construct an arc in plane and in space as we will see in the next section. Nevertheless,
Theorem 2.1.2 will become useful in Chapter 5 when we will need centres of arcs to measure
a distance of biarc from a curve.

2.2 Construction of biarc by rotating chord vector

In this section we will show how to construct arc through points A and B with tangent t
at A by rotating the the unit chord vector between points A and B. Let us have a unit
chord vector

e =
B−A

||B−A|| . (2.10)
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A

B

A

B

Figure 2.3: Construction of arc by rotating chord vector

Algorithm 1 getArc(A,B, t)

1: e =
B−A

||B−A||
2: α = arccos (e · t)
3: ϕ(u) = (u− 1)α

4: δ(u) = ||B−A||sin (uα)
sinα

5: a(u) = A+

(

cosϕ(u) − sinϕ(u)
sinϕ(u) cosϕ(u)

)

· (δe)

Return: a(u)

Algorithm 2 getArc3D(A,B, t)

1: e =
B−A

||B−A||
2: α = arccos (e · t)
3: ϕ(u) = (u− 1)α

4: δ(u) = ||B−A||sin (uα)
sinα

5: a(u) = A+R(ϕ, t, e) · (δe)
Return: a(u)

We denote α the angle between the unit chord vector e and the tangent vector t, i.e.,

α = arccos (e · t). (2.11)

Next, we define angle and distance parametrizations (c.f. [12])

ϕ(u) = (u− 1)α, u ∈ 〈0, 1〉 , (2.12)

δ(u) = ||B−A||sin (uα)
sinα

, u ∈ 〈0, 1〉 . (2.13)

Now, we can form arc a(u) by rotating the unit chord vector e by parametrized angle ϕ(u)
and multiplied by the parametrized distance δ(u) (see Figure 2.3). The above procedure
can be written as Algorithm 1: getArc(A,B, t). The same procedure can also be applied
to construct an arc in R3 space. But in this case, we need to specify the plane in which we
rotate. It is the plane spanned by t and e. The Algorithm 2: getArc3D(A,B, t) shows
construction in R3 space.1

Advantage of this construction is that the arc a(u) for u ∈ 〈0, 1〉 automatically starts
at A and ends at B. Disadvantage of this construction is that the parametric description

1The form of rotation matrix in R3 is complicated, so in Algorithm 2 we use the notation R(ϕ, t, e)
meaning rotation by angle ϕ in plane spanned by t and e.

18



is more complicated – it contains sine and cosine multiples.

We can also obtain locus of all possible joining points for data (P1, t1), (P2, t2) by
Algorithm 1 and Algorithm 2. First, we need to find a tangent vector tL of the locus at
point P1 (so far we only know that locus has the same angle with t1 and t2). We recall the
definition of a rotation matrix that maps a tangent vector t at P2 into the (compatibly
oriented) vector t∗ at P1 of the circle with tangent t at P2 passing through the point P1,
i.e.,

R = 2e⊗ e− I, (2.14)

where I is identity matrix. Then the tangent vector tL of the locus circle at P1 can be
obtained as

tL = t1 + t∗2, (2.15)

where t∗2 is vector obtained by
t∗2 = R · t2. (2.16)

Now we can construct locus by getArc(P1,P2, tL) in plane and by getArc3D(P1,P2, tL) in
space. Actually, for u ∈ 〈0, 1〉 we do not get the whole locus circle but only arc of the locus,
that starts at P1 and ends at P2. But this is not a problem because we will usually choose
joining point on this arc, since joining points chosen outside of this arc form unnecesarily
long biarcs. In the middle of this locus arc (i.e. for u = 0.5) we get a joining point J
that has the same distance to P1 as to P2 and we can form so called ”equal-chord” biarc
(discussion about how to choose a joining point will be given in Chapter 4).

When we have constructed locus arc to get a joining point J, we construct two arcs
a1(u), a2(u) that form biarc by

a1(u) = getArc(P1,J, t1), a2(u) = getArc(P2,J,−t2). (2.17)

Notice that arc a2(u) will be oriented from P2 to J, which is opposite orientation than
we want. However, in one step we can fix this and join the two arc in one by forming
reparametrized piecewise function

b(t) =







a1(t) if t ≤ 1
2
,where t =

u

2

a2(t) if t >
1

2
,where t = 1− u

2

(2.18)

where t ∈ 〈0, 1〉. Equation (2.18) is equation of biarc that gives values of P1 for t = 0, J

for t =
1

2
and P2 for t = 1.

Figure 2.4 shows biarc for data (2.9) constructed by this method, where the first arc
a1(t) for t ∈ 〈0, 0.5〉 has equation

x(t) = 1.59349 sin (2.57947t)[0.960762 cos (1.28974(1− 2t))− 0.277375 sin (1.28974(1− 2t))],

y(t) = 1.59349 sin (2.57947t)[0.277375 cos (1.28974(1− 2t)) + 0.960762 sin (1.28974(1− 2t))]
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t=0

t=0.5 t=1

0.5 1.0 1.5 2.0 2.5 3.0 3.5
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t1

t2

C1

C2

J

Figure 2.4: Biarc constructed by rotating the chord vector. Notice the parameter values
at P1,J and P2.

and the second arc a2(t) for t ∈ 〈0.5, 1〉 has equation

x(t) = 3 + 1.75704 sin (2.11582(1− t))[−0.998788 cos (1.05791− 2.11582(1− t))+

+ 0.0492169 sin (1.05791− 2.11582(1− t))],

y(t) = 0.5 + 1.75704 sin (2.11582(1− t))[−0.0492169 cos (1.05791− 2.11582(1− t))−
− 0.998788 sin (1.05791− 2.11582(1− t))].

If we wish to interpolate more than two points (with two tangents) we can split given
data to point-tangent data pairs

(P1, t1), (P2, t2),

(P2, t2), (P3, t3),

...

(Pi, ti), (Pj, tj),

and use the above mentioned procedure for each pair. Example of such a curve can be seen
in Figure 2.5.
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Figure 2.5: Piecewise circular spline curve consisted of two biarcs.
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Chapter 3

Biarc as NURBS

3.1 Control polygon, knots and weights

In this section we will derive very efficient way how to describe biarc by NURBS formula-
tion. For more information about NURBS, see for example [8]. We start by determining
control points. We need three control points for each of the two arcs, whereas one point
(joining point) will be common. So generally we need to determine 5 control points. We
set P1 and P2 to be start and end point of the control polygon, respectively. We denote
three remaining unknown points A1,J,A2. We want the first arc to start at P1 and have
unit tangent vector t1 at P1 and we want the second arc to end at point P2 and have unit
tangent vector t2 at P2. Thus, it holds

A1 = P1 + αt1, (3.1)

A2 = P2 − βt2, (3.2)

where α, β are for now unknown positive numbers such that α is the distance of A1 from
P1 and β is the distance of A2 from P2. Now we determine the point J, that should lie on
the abscisse between A1,A2, in order to get G1 continuity at the point J. There are many
ways how to choose the ratio γ of the distance of this point from A1 and from A2, i.e.

γ =
|A1J|
|A2J|

=
α

β
. (3.3)

Choice of this ratio corresponds to choice of a joining point. Since the control triangle of
circular arc must be an isosceles triangle and with respect to (3.1), (3.2), we get

|A1J| = |A1P1| = α, (3.4)

|A2J| = |A2P2| = β. (3.5)

We can rewrite above equations as

(A1 − J).(A1 − J) = α2, (3.6)
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Figure 3.1: Interpolation of one point-tangent data pair by NURBS biarc with ratio
α

β
= 1, 2, 4, 0.25 respectively

(J−A2).(J−A2) = β2. (3.7)

So we are looking for a joining point for which

J =
β

α + β
A1 +

α

α+ β
A2. (3.8)

By substituting (3.1) and (3.2) to (3.8) one gets

J =
β

α+ β
(P1 + αt1) +

α

α + β
(P2 − βt2).

We take
α

α + β
in front of the expression on the right and the above equation becomes

J =
α

α+ β

[

β

α
P1 + βt1 +P2 − βt2

]

. (3.9)
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Now we use (3.9) to express the difference vectors A1 − J and J−A2

A1 − J = P1 + αt1 −
α

α + β

[

β

α
P1 + βt1 +P2 − βt2

]

=
α

α + β

[

α + β

α
P1 + (α + β)t1 −

β

α
P1 − βt1 −P2 + βt2

]

=
α

α + β
[P1 −P2 + αt1 + βt2] .

We denote d = P2 −P1 and we can write

A1 − J =
α

α + β
[−d+ αt1 + βt2] . (3.10)

We insert (3.10) to (3.6) and get

(A1 − J)2 − α2 =
α2

(α + β)2
[−d+ αt1 + βt2]

2 − α2 =

=
α2

(α+ β)2
[

d2 + α2t21 + β2t22 − 2αd · t1 + 2αβt1 · t2 − 2βd · t2
]

= 0

and since t1 and t2 are unit vectors

α2

(α + β)2
[

d2 + α2 + β2 − 2αd · t1 + 2αβt1 · t2 − 2βd · t2
]

= 0. (3.11)

We multiply equation (3.11) by
(α + β)2

α2
and get (c.f. [7])

d2 − 2αd · t1 − 2βd · t2 + 2αβ(t1 · t2 − 1) = 0. (3.12)

This equation has unknowns only α and β. When the value of ratio
α

β
is set, (3.12) is

ordinary quadratic equation with unknown α. We solve it and choose the positive root.
Next, we plug α and β to (3.1),(3.2),(3.8) and the control polygon is determined. To form
a NURBS curve, knot values are also needed. Let us define knot vector as (see [7])

K = {0, 0, 0, T, T, 1, 1, 1} , (3.13)

where

T =
|P1J|

|P1J|+ |JP2|
. (3.14)

Also, weights of control points need to be set. It is well known, that in order to produce
a circular arc from a curve with three control points, the end points must have a unitary
weight, while the weight of the central control point must be equal to the cosine of half the
angle between the segments joining the points. So the weight vector for biarc has a form

W =

{

1, cos
β1

2
, 1, cos

β2

2
, 1

}

, (3.15)
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Figure 3.2: Control polygon

where β1 is the angle between P1,A1 and J,A1, and β2 is the angle between J,A2 and
P2,A2 (see Figure 3.2).

Finally, we can construct biarc as a NURBS curve with control polygon {P1,A1,J,A2,P2} ,
knot vector K and weight vector W .

3.2 NURBS biarc with α = β

If we set α = β, we get control polygon such that

α

β
=

|P1A1|
|P2A2|

=
|A1J|
|A2J|

= 1. (3.16)

It makes computations simpler, because (3.12) reduces to

d · d− 2αd · (t1 + t2) + 2α2(t1 · t2 − 1) = 0. (3.17)

This equation has roots

α1,2 =
2d · (t1 + t2)±

√

[2d · (t1 + t2)]2 − 8(t1 · t2 − 1)d · d
4(t1 · t2 − 1)

. (3.18)

We modify the expression under the square root.

[2d · (t1 + t2)]
2 − 8(t1 · t2 − 1)d · d = (3.19)

= 4d2t21 + 8d2t1 · t2 + 4d2t22 − 8d2t1 · t2 + 8d2 = (3.20)

= 4d2t21 + 4d2t22 + 8d2, (3.21)
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which is always positive, therefore we always have real solutions. Moreover,

2d · (t1 + t2) ≤
√

[2d · (t1 + t2)]2 − 8(t1 · t2 − 1)d · d, (3.22)

because t1 · t2 ∈ 〈−1, 1〉. So if pick the root

α =
2d · (t1 + t2)−

√

[2d · (t1 + t2)]2 − 8(t1 · t2 − 1)d · d
4(t1 · t2 − 1)

. (3.23)

we get negative numerator and since the denominator is always negative, we get positive
solution. This is important, since if we would have only negative α (and therefore negative
β), we would get the points A1,A2 (see (3.1),(3.2)) in the opposite direction from P1,P2

then we want and we would get biarc interpolating data (P1,−t1), (P2,−t2) instead of the
data (P1, t1), (P2, t2).

The choice of α = β has another advantage that special cases can easily be identified
and computed from (3.17). There are three special cases :

1. t1 · t2 = 1

In this case, tangents t1, t2 are parallel. We can rewrite (t1 + t2) as 2t1 and (3.17)
becomes

d · d− 4αd · t1 = 0, (3.24)

with root

α =
d · d
4d · t1

. (3.25)

Since d · d is always positive, we get a positive root, if d · t1 > 0, i.e., if the angle

between chord d and tangent t1 is smaller than
π

2
. If d ·t1 < 0, we have only negative

α and we can use one of the variants below.

Variant a)
We use the negative α and set weight vector to

W =

{

1,− cos
β1

2
, 1,− cos

β2

2
, 1

}

. (3.26)

Then we get a biarc that consist of arcs that are greater then semicircle (see Figure
3.3).

Variant b)
We split the data to

((P1, t1), (B, tB)), ((B, tB), (P2, t2)), (3.27)
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t1
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tB

Figure 3.3: Special case 1: Parallel tangents such that d · t1 < 0 variant a) (left), variant
b) (right) for the same point-tangent data pair.

where B =
P1 +P2

2
and tB is antiparallel to t1 = t2. After interpolation of these

two point-tangent data pairs, we get curve formed by two biarcs, i.e., four arcs (see
Figure 3.3). Variant a) has disadvantage of negative weights and it gives biarc that
is unnecesarily long, therefore it is usually more convenient to use variant b).

Moreover, if in this case d · t1 = 0, then we get 0 denominator in (3.25). This means
that tangents t1, t2 are perpendicular to chord vector d and biarc consists of two
semicircles (and therefore two points of control polygon ”are at infinity”). This can
be also solved by splitting the data as in variant b).

2. t1 · t2 = −1

In this case, tangents t1, t2 are antiparallel. Since also t1 + t2 = 0, (3.17) becomes

d · d− 4α2 = 0,

which has roots

α = ±
√
d · d
2

= ±||d||
2

.

So we can always pick the positive one.

3. d · (t1 + t2) = 0

This means that the vector sum of tangents t1, t2 is perpendicular to the chord joining
the end points. Again, we split the problem into interpolation of two point-tangent
data pairs

((P1, t1), (B, tB)), ((B, tB), (P2, t2)), (3.28)

where B =
P1 +P2

2
and tB is perpendicular to d (c.f. Figure 3.5).
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Figure 3.4: Special cases 2 and 3: Biarc with antiparallel tangents (left) and biarc with
d · (t1 + t2) = 0 (right).

The procedure of constructing NURBS biarc with α = β is summarized in Algorithm
3.

Algorithm 3 nurbs(P1, t1,P2, t2) returns control points, knot and weight vector

Inputs: P1, t1,P2, t2

1: Find positive α satisfying d · d− 2αd · (t1 + t2) + 2α2(t1 · t2 − 1) = 0
2: Determine remaining points of control polygon A1 = P1 + αt1,A2 = P2 − αt2,

J =
1

2
(A1 +A2)

3: Determine knot vector K = {0, 0, 0, T, T, 1, 1, 1}, where T =
||J−P1||

||J−P1||+ ||P2 − J||
4: Determine weight vector W =

{

1,
cos β1

2
, 1,

cos β2

2
, 1

}

, where β1 = ∠(P1A1J),

β2 = ∠(P2A2J)

Returns: A1,J,A2, K,W

3.3 Joining more NURBS biarcs together

We can also join two or more NURBS biarcs to one. Necessary condition that must be
satisfied when joining two biarcs together is that the first biarc ends at the point where
the second biarc starts and tangent at this point is the same. Therefore if the first biarc is
interpolating point-tangent data pair (P1, t1,P2, t2) then the second one must interpolate
(P2, t2,P3, t3).

Let us have two NURBS biarcs, the first one described by

{P1,A1,J1,A2,P2} , (3.29)

W1 =

{

1,
cos β1

2
, 1,

cos β2

2
, 1

}

, (3.30)
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Figure 3.5: Three NURBS biarcs joined together

K1 = {0, 0, 0, T1, T1, 1, 1, 1} , (3.31)

T1 =
|P1J1|

|P1J1|+ |J1P2|
, (3.32)

and the second one by
{P2,A3,J2,A4,P3} , (3.33)

W2 =

{

1,
cos β3

2
, 1,

cos β4

2
, 1

}

, (3.34)

K2 = {0, 0, 0, T2, T2, 1, 1, 1} , (3.35)

T2 =
|P2J2|

|P2J2|+ |J2P3|
. (3.36)

These two NURBS biarcs can be described as one by control polygon

{P1,A1,J1,A2,P2,A3,J2,A4,P3} , (3.37)

weight vector

W =

{

1,
cos β1

2
, 1,

cos β2

2
, 1,

cos β3

2
, 1,

cos β4

2
, 1

}

, (3.38)

and knot vector

K =

{

0, 0, 0,
T1

2
,
T1

2
,
1

2
,
1

2
,
1 + T2

2
,
1 + T2

2
, 1, 1, 1

}

. (3.39)

We can join more then two NURBS biarc together. Again the condition of continuous
data must be satisfied, i.e. following biarc must start where the previous biarc ended with
the same tangent at this point. Let n be the number of biarcs we want to join, then i-th
biarc is defined by control polygon

{Pi,A2i−1,Ji,A2i,Pi+1} , (3.40)
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with weight vector
{1, w2i−1, 1, w2i, 1} (3.41)

and knot vector
{0, 0, 0, Ti, Ti, 1, 1, 1} . (3.42)

To describe n NURBS biarcs as one NURBS curve, we set control polygon to be

{{Pi,A2i−1,Ji,A2i}ni=1 ,Pn+1} . (3.43)

Weight vector of resulting NURBS curve can be written as

W = {{1, w2i−1, 1, w2i}ni=1 , 1} (3.44)

and knot vector as

K =

{

0, 0,

{

i− 1

n
,
i− 1 + Ti

n
,
i− 1 + Ti

n
,
i

n

}n

i=1

, 1, 1

}

. (3.45)

3.4 NURBS biarc in space

NURBS description of biarc has great advatage of simple generalization to higher dimen-
sion. We can construct NURBS biarc in R3 by the exactly same procedure as in plane. The
only change is that in this case we work with 3 coordinates, but the formulas for control
points, weight vector and knot vector remain the same. Again, we can join more NURBS
biarcs in one by (3.43), (3.44) and (3.45).

J

P1

P2

t1

t2

Figure 3.6: Spatial NURBS biarc
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Chapter 4

Choosing a joining point

In this chapter we will discuss some possible choices of joining point of biarc and its effect
on the resulting shape and curvature of the biarc.

4.1 Equal-chord biarc

The equal-chord biarc is often used in practice, since it forms nicely shaped biarc. It
is constructed so that the two segments P1J and JP2 have the same length. First, we
construct locus circle l of all possible joining points as in Theorem 1.1.2. Since we want
the distance P1J to be the same as the distance JP2, we find J as intersection of bisector
of P1P2 and locus circle l (see Figure 4.1). Once we have a joining point, we construct
biarc as described in Chapter 2.

P1 P2

t1

t2

aa

J

P1 P2

t1

t2
J

Figure 4.1: Finding a joining point of equal-chord biarc (left). Example of equal-chord
biarc (right).

4.2 Parallel-tangent biarc as NURBS

We can use NURBS formulation to construct the so called parallel-tangent biarc. This biarc
has such property that tangent tJ at joining point J is parallel to chord P1P2. Parallel-
tangent biarc can only be C-shaped (see Definition 1.1.2), therefore the point-tangent data
pair must satisfy condition that the angles φ1, φ2 between tangent vectors and chord vector
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have the opposite sign.

We require that NURBS has all properties as in Chapter 3 and we will add one more
property. Let tJ be a unit vector from A1 to J (i.e., also from J to A2):

tJ =
J−A1

||J−A1||
=

J−A1

α
. (4.1)

For tangent tJ at joining point J to be parallel to chord P1P2, the following must hold

tJ = e =
P2 −P1

||P2 −P1||
, (4.2)

where e is the unit chord vector. We plug (4.1) to (4.2) and get

J−A1

α
− e = 0.

Next, we replace J−A1 by (3.10)

− α

α + β
· (−d+ αt1 + βt2)

α
− e = 0,

and modify

− 1

α + β
· (−d+ αt1 + βt2)− e = 0,

d− αt1 − βt2 − αe− βe = 0,

β =
(d− α(t1 + e)) · (t2 + e)

(t2 + e) · (t2 + e)
. (4.3)

Equation (4.3) gives relation between α and β that must hold in order to construct a
”parallel-tangent” biarc.

4.3 Minimizing the difference in curvatures

We can choose joining point J in such a way that we obtain a curve with the best local
smoothness. This means that absolute difference

4k = |k2 − k1|

of the curvatures k1 and k2 of the two arcs is minimal. In practice, minimizing the differ-
ence of curvatures of the two arcs minimizes vibrations of the rotating cam of NC machine.
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P2

t1

t2

Figure 4.2: ”Parallel-tangent” biarc

Let us again have the point-tangent data pair (P1, t1), (P2, t2) that we wish to inter-
polate by a biarc curve. This means that the distance between the centres M1 and M2 of
the circles must be equal to the absolute difference of the radii |r1 − r2| of the two circular
arcs. This can be expressed as (c.f. [11]):

(r1 · n1 − r2 · n2 − δe)2 = (r1 − r2)
2, (4.4)

where n1,n2 are the unit normal vectors at the points P1,P2, e is the unit vector directed
from P1 to P2 and δ is the distance between the points P1 and P2. After modification of
(4.4), we can express radius r2 in terms of r1:

r2 =
r1δn1 · e−

δ2

2
δn2 · e + r1(1− n1 · n2)

. (4.5)

It is well known that curvature of a circle is constant and it is reciprocal of radius of
the circle. Considering this, we can rewrite (4.5) as

k2 =
k1δn2 · e + 1− n1 · n2

δn1 · e− k1
δ2

2

. (4.6)

We can replace scalar products of normal vectors n1,n2 and vector e by trigonometric
functions using angles α1, α2 (see Figure 4.3) :

k2 =
−k1δ sinα2 + 1− cos (α1 − α2)

δ sinα1 − k1
δ2

2

. (4.7)

Radii r1, r2 (resp. curvatures k1, k2) and angles α1, α2 can also have a negative sign.
Radius r1 is positive if P1M1 has the same direction as n1 (analogously for r2). Sign of
α1, α2 depends on its orientation from P1,P2. In Figure 4.3, α1 is negative, α2 is positive,
and r1 and r2 are positive.

Now we want to minimize the difference between curvatures

4k = |k1 − k2|,
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Figure 4.3: Angles α1, α2

which is equivalent to solving the equation

dk1

dk2
= 1. (4.8)

Putting together (4.6) and (4.8) we get (c.f. [11])

k∗
1 =

2

δ

[

n1 · e±
√

(n1 · e)(n2 · e) +
1− n1 · n2

2

]

, (4.9)

k∗
2 = −2

δ

[

n2 · e±
√

(n2 · e)(n2 · e) +
1− n1 · n2

2

]

. (4.10)

which are expressions for optimal curvatures that minimize 4k = |k1 − k2|. The variable
sign ± is chosen so that k∗

1, k
∗
2 are minimum of 4k = |k1−k2|, not maximum. We can again

replace scalar products with trigonometric functions and get expressions for minimizing
difference in curvatures of the two arcs

k∗
1 = −2

δ

(

sinα1 + sin
α1 + α2

2

)

, (4.11)

k∗
2 =

2

δ

(

sinα2 + sin
α1 + α2

2

)

. (4.12)
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Figure 4.4: Angles φ1, φ2

Optimal k∗
1, k

∗
2 also provides low value of the strain energy which can be expressed as

integral

E =

∫

l

k2ds, (4.13)

where l is the length of a curve. For biarc curve, (4.13) can be expressed as

E =
φ1

r1
+

φ2

r2
, (4.14)

where angles φ1, φ2 correspond to length of arcs a1, a2 (see Figure 4.4).

Figure 4.5 shows four different biarcs for one point-tangent data pair and Table 4.1
shows values of energy strain integrals of these biarcs. Biarc b1 was constructed by the
above description to minimize the difference in curvatures.
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t1
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J

b3

P1 P2

t1

t2

J

b4

Figure 4.5: Various biarcs for the same point-tangent data pair and values of energy strain
integral E, the first one minimizes E.

biarc energy strain integral value
b1 1.19187
b2 1.84039
b3 2.45102
b4 2.26468

Table 4.1: Table of energy strain integral values.
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4.4 Joining point on the curve

When we approximate given curve by biarcs (more about approximation of curve in Chap-
ter 5), we can choose the joining point J to lie on the curve (c.f. [16]), i.e., we set J to be
the intersection of given curve with locus of all possible joining points (see Figure 4.6). ”J
on the curve” method cannot be used for interpolation of data, it can only be used when
we are approximating a curve (since we need a curve to be given). This choice typically
produces a biarc which is closer to the original curve c(s) than those produced by other
methods, because in this case not only P1 and P2 lie on the curve, but also J. Biarc then
better follows the shape of the curve and the error is reduced. Example of approximation
by biarcs with this choice of joining point will also be given in Chapter 5.

P1
P2

t1

t2

J

Figure 4.6: Joining point J as an intersection of locus circle and given curve
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Chapter 5

Approximation of a given curve

5.1 Construction of an approximating biarc

In this chapter, we will discuss approximation of a given curve by piecewise circular spline
curve composed of biarcs when accuracy is given. Let us have given accuracy ε, parametric
equation of a curve c(s) where s ∈ 〈0, 1〉. We get coordinates of points P1 and P2 as

P1 = c(0), P2 = c(1). (5.1)

We can also estimate tangents at these two points as

t1 =
c′(0)

||c′(0)|| , t2 =
c′(1)

||c′(1)|| . (5.2)

We find a biarc through point-tangent data pair (P1, t1), (P2, t2). Next, we compute
the error of approximation (how to compute the error will be shown in next section). If
the error is smaller than given accuracy, we are done. Otherwise we double (or increase in
another way) the amount of points used, i.e., we split the data to

(

c(s), 0,
1

2

)

(5.3)

and
(

c(s),
1

2
, 1

)

(5.4)

and repeat. The above procedure can be summarized as Algorithm 4: approxCurve(c(s), ε)
(c.f. [16]).

In practice, we can also modify the approximation method in a way that once a segment
of a curve has error smaller than the given tolerance, we leave it like that and we subdivide
only those parts of the curve with errors larger than the given tolerance.
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Algorithm 4 approxCurve(c(s), ε)

n=1
while error > ε do

construct biarcs through

(

c(s),
i− 1

n
,
i

n

)

for i = 1...n

n = 2n
end while
Return constructed biarcs

5.2 Error measure

To measure the error we can use

δ1 = max
t∈〈0,1〉

||c(t)− b(t)||, (5.5)

where b(t) is a parametrization of biarc, t ∈ 〈0, 1〉. This error measure has the advantage
of fast computations but it is not always accurate. Better way to measure the distance
between two curves is by the Hausdorff distance

δ2 = max
s∈〈0,1〉

{

min
t∈〈0,1〉

||c(s)− b(t)||, min
t∈〈0,1〉

||b(t)− c(s)||
}

(5.6)

Hausdorff distance usually gives more accurate result if we use sufficiently many points, but
can be very slow. For example for just 100 sampled points on the curve, 20 000 distances
need to be computed.

There is another good technique how to measure distance of a biarc from curve – one-
sided Hausdorff distance with exploited fact, that we approximate the curve with circles,
whose centres can be easily computed (c.f. [16]). Centre of a circle through A and B with
unit tangent vector t at A is given by (see Theorem 2.1.1)

C =
A+B

2
+

||B−A||
2 tanα

n, (5.7)

where α is the angle between tangent vector t and chord vector e =
B−A

||B−A|| and n is

vector perpendicular to e. One-sided Hausdorff distance between the curve and the biarc
is then given as

δ3 = max
i,j

|ri − ||Ci − c(sj)|||, i = 1, ...n, j =
1

N
, ...,

N − 1

N
(5.8)

where ri,Ci are radius and centre of i − th arc and n is number of interpolating arcs, N
is number of distances computed. For higher N we get more accurate result. Usually it
is sufficient to take N = 200. We can use this error measure also in R3, where centre of
interpolating arc through points A,B with unit tangent vector t at A is given as intersec-
tion of three planes – see Theorem 2.1.2.
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Figure 5.1: One-sided Hausdorff distance

5.3 Example of approximation

In this section we show how we approximated given curve by biarcs with two different
choices of joining point. First by ”α = β NURBS biarcs” (see Section 3.2) and then by ”J
on the curve biarcs” (see Section 4.4). We have approximated curve with parametrization

c(s) = (2 cos (2πs), sin (4πs)), s ∈ (0, 1). (5.9)

It is a symmetric curve, therefore it is convenient to choose odd number of approximating
biarcs in order to get again symmetric curve. Comparisson of approximation by the two
methods can be seen in Figure 5.2 and in Table 5.1. We can see that the approximation
with the choice of J on the curve is closer to the original curve.

number of biarcs
Hausdroff distance error
NURBS J on the curve

2 0.30636 0.30636
4 0.36031 0.23076
8 0.05713 0.01872
12 0.01084 0.00761

Table 5.1: Error values of approximation of curve c(s) = (2 cos (2πs), sin (4πs)).
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Figure 5.2: Approximation of curve c(s) = (2 cos (2πs), sin (4πs)) by 2,4,8 and 12 biarcs,
respectively. Curve is shown in blue, approximation in red. Images on the left show
approximation by NURBS biarc with α = β, images on the right show approximation by
biarcs with joining point J on the curve.

5.4 Order of approximation of equal chord method

In this section we derive the order of approximation by equal-chord biarcs. We have ap-
proximated cubic Bézier curve in R2 with control points (0, 0), (30, 150), (250, 120), (300, 0)
(see Figure 5.3). Table 5.2 shows error depending on the number of biarcs used. It also
shows the ratio of two consecutive errors. To measure the distance between approximating
piecewise circular spline and the original curve we have used one-sided Hausdorff distance
(5.8) estimated as maximum of 200 distances. We can see that gradually, when we double
the number of biarcs the improvement ratio tends to 23, therefore the approximation order
of method is three. We have also approximated cubic Bézier curve in R3 space with con-
trol points (0, 0, 0), (−20, 150,−120), (300,−100, 80), (350, 100, 240) (see Figure 5.3). Also
in R3 space the improvement ratio tends to 23 and the order of approximation is 3.
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Figure 5.3: Cubic Bézier curve in R2 with control points (0, 0),(30, 150),(250, 120),(300,
0) (left). Cubic Bézier curve in R3 with control points (0, 0, 0), (-20, 150, -120), (300, -100,
80), (350, 100, 240) (right).

R2 case R3 case
n error ratio n error ratio
2 2.34193 — 2 11.5458 —
4 2.96854 · 10−1 7.88929 4 2.81163 4.10643
8 2.74816 · 10−2 10.8018 8 7.80422 · 10−1 3.60271
16 3.35979 · 10−3 8.17956 16 4.94903 · 10−2 15.7692
32 4.43687 · 10−4 7.57244 32 4.81318 · 10−3 10.2822
64 5.78451 · 10−5 7.66948 64 5.23239 · 10−4 9.19882
128 7.33738 · 10−6 7.88442 128 5.97143 · 10−5 8.76238
256 9.22435 · 10−7 7.95436 256 7.12711 · 10−6 8.37848
512 1.15589 · 10−7 7.98028 512 8.70485 · 10−7 8.18751
1024 1.44655 · 10−8 7.99071 1024 1.0756 · 10−7 8.09305

Table 5.2: Table of one-sided Hausdorff distances between original curve and approximating
piecewise circular spline consisted of n biarcs in R2 and R3 and improvement ratio.
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Chapter 6

Application of piecewise circular
curves

6.1 Approximation of intersection of two natural sur-

faces

Mechanical parts may be classified in two broad groups:

• sculptured or free-form objects, e.g., car bodies, characterized by doubly curved
bounding surfaces,

• unsculptured or functional objects, e.g., machine-tool components.

Part surveys show that a large proportion of parts are unsculptured, and that many
of these are bounded by planes, cylinders, spheres, cones, tori, and blends between such
surfaces (c.f. [10]). Planar, cylindrical, spherical, and conical surfaces are often called
the natural quadrics, because they are produced easily by the usual machining operations.
The curves that result from intersections of these surfaces generally cannot be expressed in
closed form, therefore these curves of intersection are usually approximated by cubic splines
that interpolate points lying on the true intersections. Cubic splines provide second-degree
continuity, but they are expensive in computations. In this section we will show how
to approximate intersection curves of natural surfaces by piecewise circular spline curves,
trading second-degree continuity for computational simplicity (method taken from [10]).

Natural surface F(u, v) can be parametrized in such way, that if we successively keep
fixing one parameter, we get parametric description of lines or circles called generators (see
Figure 6.1) defined by

F(u0, v),F(u, v0), (6.1)

where u0, v0 are constants. For example let us have cone with parametric description

F(u, v) =

{

h− u

h
r cos v,

h− u

h
r sin v, u

}

, (6.2)
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Figure 6.1: Line and circle generators we get if we fix one parameter in cone (left). Inter-
section of 4 cone line generators with plane (right).

where h is height and r is radius of the base. For fixed v = v0 we get lines, for fixed u = u0

circles. We use these generators when approximating intersection of two natural surfaces.

Let us have two natural surfaces F(u, v),G(r, s) with parametric descriptions

F(u, v), u ∈ (u1, u2), v ∈ (v1, v2), G(r, s), r ∈ (r1, r2), s ∈ (s1, s2). (6.3)

On surface F(u, v), we pick one set of generators (either F(u0, v) or F(u, v0)) and we find
intersection of this set with surface G(s, r). The more generators we use, the more inter-
secetion points we get, thus we get also better approximation.

After we have got intersection points, we also need tangents at these points. Tangent
ti at the point of intersection Pi can easily be calculated as

ti = ni
1 × ni

2, (6.4)

where× denotes cross product and ni
1,n

i
2 are normals at pointPi to surfaces F(u, v),G(r, s),

respectively. Once we have got sampled points and tangent vectors at these points, we can
interpolate them by biarcs to get approximation of curve of intersection by piecewise circu-
lar curve. The above procedure can be written as Algorithm 6.1, where F(u, v0) are used
as generators. Algorithm for case when F(u0, v) are used would be analogical.
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Figure 6.2: Approximation of intersection curve of cone with plane (4 generators used) and
with cylinder (8 generators used).

Algorithm 5 approxIntersect1 (n,F(u,v),G(r,s)) - approximate intersection of two natural
surfaces
n = N (set number of generators)

V=

{

v1 +
i− 1

n
(v2 − v1)

}n+1

i=1

(create sequence of parameter values v = v0 )

for i = 1 → n + 1 do
Fi(u) = F(u, Vi) (get generators )

end for
for i = 1 → n + 1 do
Find Pi = intersection of Fi(u) with surface G(r, s)
Find tangent ti = ni

1 × ni
2

end for
for i = 1 → n do
Construct biarc throught data (Pi, ti,Pi+1, ti+1)

end for
if Intersection is closed curve then
Construct biarc through data (Pn+1, tn+1,P1, t1)

end if

45



6.2 Approximation of intersection of two rational sur-

faces

In this section we will show how to approximate the intersection curve of two rational
parametric surfaces

S1(r, s), r ∈ (r1, r2), s ∈ (s1, s2), (6.5)

S2(u, v), u ∈ (u1, u2), v ∈ (v1, v2) (6.6)

by biarcs. We start by defining the rational parametric surface.

Definition 6.2.1. We say that a surface S(r, s) is a rational parametric surface, if it can
be written as

S =

(

p1(r, s)

q1(r, s)
,
p2(r, s)

q2(r, s)
,
p3(r, s)

q3(r, s)

)

, (6.7)

where pi, qi are polynomials in s and r and greatest common divisor of (pi, qi) satisfies

gcd(pi, qi) = 1, i = 1, 2, 3. (6.8)

Next, we need an implicit equation of one of the surfaces. A common approach for
implicitization is to consider the variety V in affine space C2+3 which is defined by equations
(see [1])

q1(r, s)x− p1(r, s) = 0, (6.9)

q2(r, s)y − p2(r, s) = 0, (6.10)

q3(r, s)z − p3(r, s) = 0. (6.11)

The variety V is interpreted as the graph of the parametrization (6.7). An implicit
equation describes the algebraic relation over the coordinates x, y, z of the surface S.
So the implicitization process consists of finding algebraic combinations of the paramet-
ric equations (6.9),(6.10),(6.11), which eliminate the variables r and s. Notice, that
qi(r, s) = 0, i = 1, 2, 3 is allowed in (6.9),(6.10),(6.11), but not in (6.7). To ensure that
qi(r, s) 6= 0, we add another equation (called control polynomial)

1− q1(r, s)q2(r, s)q3(r, s)w = 0. (6.12)

Now we apply Gröebner basis technique1 to eliminate variables r, s, w from equations
(6.9),(6.10),(6.11) and (6.12). More detailed description can be found in [1]. We have used
Wolfram Mathematica function GroebnerBasis.

Let
F (x, y, z) = 0 (6.13)

1One can also apply methods that use resultants or characteristic set.
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Figure 6.3: Implicit curve of intersection in (u, v) plane (left) and the corresponding actual
curve of intersection in R

3 (right)

be implicit equation of surface S1 we have got by the above mentioned method. We can
now substitute the parametric equation of the surface S2(u, v) into (6.13) to get implicitly
given algebraic curve of intersection

f(u, v) = 0. (6.14)

The topology of the curve (6.14) in the parameter plane (u, v) is important for us. The
actual curve of intersection in R3 space has as many parts, as there are continuous parts of
curve (6.14) in parameter plane (u, v). For example see Figure 6.3 - the intersection curve
in (u, v) plane consists of two detached curves and therefore the intersection in R3 consists
also of two detached curves. To determine the topology of the curve (6.14), we need to
define division points.

Definition 6.2.2. We say that a point P0 = (u0, v0) is a division point if at least one
partial derivative at this point is zero, i.e. if

fu(u0, v0) = 0 (6.15)

or
fv(u0, v0) = 0. (6.16)

We divide the parameter domain (u1, u2), (v1, v2) by horizontal and vertical lines going
through every division point (see Figure 6.4). Horizontal and vertical lines through a point
Pi are defined by

pH = Pi + (1, 0)t, t ∈ R, (6.17)
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Figure 6.4: Parameter domain division of the curve (left) and its topology graph (right).

pV = Pi + (0, 1)t, t ∈ R, (6.18)

respectively. If the horizontal or vertical lines intersect the implicit curve (6.14), we add
also these points of intersection to division points and construct another horizontal and
veritcal lines through these points. This ensures that each of the boxes formed by these
lines will contain maximally one continuous part of the curve (6.14). In general case, the
number of horizontal and vertical lines will be the same and the domain is divided into
(n+ 1)2 boxes, where n is a number of division points. For every two division points that
have the same u (resp. v) value and for every point that lies on the domain border, the
number of vertical (resp. horizontal) lines decreases by one and we get (h+1)(v+1) boxes,
where h is number of horizontal lines and v is number of vertical lines.

We determine topology graph of the curve with respect to the division boxes. The
topology graph consists of points and abscissae, where one point corresponds to curve seg-
ment in one box and line corresponds to continuity of curve between two boxes (see Figure
6.4).

Now we can start sampling points on the implicit curve of intersection f(u, v) = 0 in
parameter plane (u, v). We take some starting point P0 = (u0, v0). We choose this point
to be the boundary point of one of the continuous parts of curve. We find a unit tangent
vector at this point as

t0 =
(fu(u0, v0),−fv(u0, v0))

||(fu(u0, v0),−fv(u0, v0))||
(6.19)
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Figure 6.5: Newton’s method for sampling points on the curve.

or if we need tangent vectors in opposite direction

t0 =
(−fu(u0, v0), fv(u0, v0))

||(−fu(u0, v0), fv(u0, v0))||
. (6.20)

Now we set a point
B0 = P0 + αt0, α ∈ R, (6.21)

which is a point that is from point P0 at distance α in direction of t0. Therefore the point
B0 does not (generally) lie on the curve f(u, v) = 0 but is ”efficiently close” to it. We find
a new point P1 on the curve by using for example Newton’s method (see Figure 6.5). We
choose α with respect to the parameter domain range and also with respect to how many
points we want to sample on the curve. We set α smaller if we have small domain range
or if we want more sampling points and we set α larger if we have large domain range or
if we want less sampling points. To get similarly spaced sampling points we can set α to
vary with respect to the tangent at a point - to increase when the slope is big and decrease
when the slope is small. This applies especially for a curve that changes its slope rapidly.

We repeat this procedure until we have sampled the points on the whole one connected
part of the curve and for all parts of the curve f(u, v) = 0. To find spatial coordinates we
plug values (u, v) of sampled points to the equation of surface S2(u, v). Tangent vectors at
these points can be obtained again as cross product of gradient vectors

t(u, v) = ∇F (x, y, z)× n2(u, v), (6.22)

where ∇F =

(

∂F

∂x
,
∂F

∂y
,
∂F

∂z

)

and n2 =
∂S2

∂u
× ∂S2

∂v
. Again, once we have got sampled

points and tangent vectors at these points, we can interpolate them by biarcs to get ap-
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proximation of curve of intersection by piecewise circular curve.
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Figure 6.6: Sampled points in plane (u, v)

We have applied the above procedure to approximate the intersection of elliptic cylinder

S1 = (r, 3 sin s,−2 + r + 3 cos s) (6.23)

and elliptic paraboloid

S2 =

(

u2 + v2 + 1

2
, 2u, 2v

)

. (6.24)

Figure 6.6 shows sampled points in parameter plane (u, v) of implicit curve of intersection

−4 + 8u− (−2 + u+ 3 cos v)2 − 9(sin v)2 = 0 (6.25)

and Figure 6.7 shows approximation of intersection of these two surfaces by this method.
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Figure 6.7: Sampled points and tangents in R3 (left), approximation of intersection by
biarcs (right).
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6.3 Joining canal surfaces

In this section we will show how to use biarcs when joining canal surfaces. A canal surface
is a surface swept by a moving circle. The circle moves along the curve called spine and
the radius of the circle can vary along the spine. We denote s(t) the parametric equation
of the spine and r(t) the function describing radius of circles. These circles lie in planes
that are perpendicular to tangent vectors of the spine. To specify these planes we define
the Frenet–Serret frame of the spine that consist of tangent, normal and binormal vectors

T(t) =
s’(t)

||s’(t)|| , (6.26)

N(t) =
T’(t)

||T’(t)|| , (6.27)

B(t) = T(t)×N(t), (6.28)

where the dot symbolizes first derivative with respect to t. Circle forming the canal surface
at a point s(t0) lies in plane spanned by vectors N(t) and B(t) and containing the point
s(t0) (see Figure 6.8).

Canal surface is then described by parametric equation (c.f. [2])

c(t, α) = s(t) + r(t)(N(t) cosα +B(t) sinα), t ∈ (0, 1), α ∈ (0, 2π). (6.29)

We will now show how to construct a joining canal surface between two canal surfaces.
Let us have canal surfaces S1,S2 defined by

s1(t), r1(t) t ∈ (0, 1), (6.30)

and
s2(t), r2(t) t ∈ (0, 1), (6.31)

with Frenet–Serret frames (T1(t),N1(t),B1(t)) and (T2(t),N2(t),B2(t)), respectively. First,
we find the spine of the joining surface, which we construct as a biarc joining data pair
(P1, t1), (P2, t2), where

P1 = s1(1), P2 = s2(0),
2 (6.32)

and
t1 = T1(1), t2 = T2(0). (6.33)

2We can also set P1 = s1(0) or P2 = s2(1). It depends on the parts of surfaces we want to join.
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Figure 6.8: Plane spanned by vectors N(t) and B(t) and containing the point s(t0).

Next we need to find function r3(t) that connects two radii functions r1(t), r2(t). There
are many ways how to do this, depending on the surface continuity we wish to preserve.
Continuity of joined surfaces exceedes framework of this thesis. In our example, we have
set r3(t) to be linear combination of r1(t), r2(t)

r3(t) = (1− t)r1 + tr2, (6.34)

preserving only G1 continuity of the spine curve. Figure 6.9 shows joining of two canal
surfaces by the above method. The first canal surface is defined by

S1(t) = (πt, sin (πt), 0),

r1(t) = 0.1πt+ 0.2, t ∈ (0, 1)
(6.35)

and the second canal surface by

S2(t) = (5, 5t+ 3, 0),

r2(t) = et, t ∈ (0, 1).
(6.36)
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Figure 6.9: Two cannal surfaces joined by a cannal surface with biarc spine. Red canal
surface is defined by (6.35). Green canal surface is defined by (6.36). Joining canal surface
with biarc spine is shown in yellow.
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Conclusion

In this thesis we have studied properties and applications of piecewise circular spline curves
consisted of biarcs in plane and in space. We have presented theorem on how to choose
the joining point to get biarc with G1 continuity at this point. We have shown how to
interpolate Hermitian data by biarcs by two techniques. Firstly by obvious technique -
finding centres of circles, which gives simply described biarc but requires solving system
of equations to get parameter values that form arc of circle. Secondly by rotating the
chord vector, which does not require finding centres of arcs and parameter range, but re-
sults in more complicated description. We have also presented biarc construction by using
NURBS formulation, that is very efficient description of biarc. Then we have discussed
various choices of joining point and we have established construction of equal-chord and
parallel-tangent biarc. We have also presented biarc that minimizes difference in curva-
tures of the two arcs. We have demonstrated how to approximate curve by piecewise
circular spline when accuracy is given and we have shown that the order of approximation
by equal-chord biarcs is three in plane as well as in space. Finally, we have presented some
applications of piecewise circular spline curves in approximation of intersection of natural
and rational surfaces and in joining cannal surfaces.

Some of the presented algorithms constructed in Wolfram Mathematica 8 can be found
on enclosed CD.

55



Bibliography

[1] Fix G., Hsu C.-P., Luo T., Implicitization of rational parametric surfaces, J.
Symbolic Computation, Vol.21, (1996), pp.329-336.

[2] Garsia A., Canal surfaces(online), 2013-01[cit.2013-04-20], Available at World Wide
Web 〈http://ieng9.ucsd.edu/ ma155f/classes/GOPHER.pdf〉.

[3] Kim T., Kim Y., Suh J.,· Zhang S., Yang Z., Internal energy min-
imization in biarc interpolation, Advanced Manufacturing Technologies, Vol.44,
(2009),pp.1165–1174.

[4] Meek D. S., Walton D. J., Approximating quadratic NURBS curves by arc splines,
Computer-Aided Design, Vol.25, (1993), pp.371-376.

[5] Meek D. S., Walton D. J., Approximating smooth planar curves by arc splines,
Journal of Computational and Applied Mathematics, Vol.59, (1995), pp.221-231.

[6] Piegl L.A., Tiller W., Biarc approximation of NURBS curves, Computer-Aided
Design, Vol.34, (2002), pp.807-814.

[7] Piegl L.A., Tiller W., Data Approximation Using Biarcs, Engineering with Com-
puters,Vol.18,(2002), pp.59-65.

[8] Piegl L. A., Tiller W.,The NURBS Book, Springer-Verlag, 2nd ed. (1995–1997).

[9] Piegl L.A., Rajab K., Smarodzinava V., Valavanis K. P., Using a biarc
filter to compute curvature extremes of NURBS curves, Engineering with Computers,
Vol.25, (2009), pp.379–387.

[10] Rossignac J.R., Requicha A.A.G., Piecewise circular curves for geometric mod-
eling, IBM Journal of Research and Development, Vol.31, (1987), pp.296 - 313 .

[11] Schönherr J., Smooth biarc curves, Computer-Aided Design, Vol.25, (1993),
pp.365-370.
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