Computing Subdivision Surface Intersection

S. Lanquetin, S. Foufou, H. Kheddouci, M. Neveu
LE2l, FRE CNRS 2309
UFR des Sciences et Techniques
Université de Bourgogne, BP 47870
21078 DIJON Cedex

sandrine.lanquetin@u-bourgogne.fr

ABSTRACT

Computing surface intersections is a fundamental problem in geometric modeling. Any boolean operation can be
seen as an intersection calculation followed by a selection of parts necessary for building the surface of the
resulting object. This paper deals with the computing of intersection curves on subdivision surfaces (surfaces
generated by the Loop scheme). We present three variants of our algorithm. The first variant calculates this
intersection after a classification of the object faces into intersecting and non intersecting pairs of faces. The
second variant is based on the 1-neighborhood of the intersecting faces. The third variant uses the concept of

bipartite graph.
Keywords

Subdivision surfaces, Loop scheme, intersection curves, bipartite graph.

1. INTRODUCTION

Surface generation methods play a very significant
role in Computer graphics and Computer Aided
Design (CAD). Subdivision surfaces based on shape
modeling has two main advantages: it applies to
meshes of arbitrary topology (like polygonal
modeling) and it exhibits local behavior (like NURBS
or B-Spline modeling); it is also based on only a small
number of control points. Subdivision techniques are
now widely used. The success of these surfaces is due
to their capacity to generate smooth surfaces starting
from arbitrary initial meshes and to their relatively
easy implementation thanks to their simple concept. A
subdivision surface is defined by an initial mesh of
arbitrary type and some refinement rules. These rules
consist of geometrical rules that determine the
positions of new control points from the positions of
old ones and topological rules which describe the
refinement procedure of the control polyhedron

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG POSTERS proceedings
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.

Copyright UNION Agency — Science Press

connectivity and thus surface properties. From a
polygonal mesh, called the control network, the
repeated application of refinement rules produces new
polygonal meshes including more and more faces. The
produced sequence of meshes converges towards a
smooth surface, called the limit surface (e.g. B-spline
or Box-spline), topologically similar to the initial
control network. Figure 1 shows an example of a
subdivision surface. From left to right, the surface
becomes increasingly smooth.

Figure 1. Example of a subdivision surface.

Since the introduction of subdivision surfaces in 1978
by Catmull-Clark [Cat78] and Doo-Sabin [Doo78],
many subdivision schemes have been proposed
[Loo87, Zor00, Kob00, Vel00].

In geometric and surface modeling, computing
surface intersections is a fundamental and recurrent
problem widely studied for algebraic and parametric
surfaces. Depending on the algorithms involved in the
different underlying tasks, intersection computation

methods may be classified into four main categories
[Boe91, Pat93, Abd96]: Analytical methods [Cha87,
Pat93], lattice evaluation methods [Bar87], marching
methods [Baj88] and subdivision methods.

In the present work, we are particularly interested in
computing intersection curves of subdivision surfaces
in the context of solid algebra where objects are all
modeled by subdivision surfaces. Although for
practical reasons our intersection computing
algorithm has only been tested on subdivision
surfaces generated by the Loop scheme, our method
is nonetheless applicable to any other subdivision
scheme. In this paper, we present and compare three
variants of a subdivision surface intersection
computation algorithm: the first variant, called the
natural variant, calculates this intersection after
having classified the object faces into intersecting or
non intersecting pairs. The second variant is based on
the 1-neighborhood of the intersecting faces. The
third variant uses the concept of bipartite graph. To
apply the two last variants, it is necessary to know the
intersecting faces and intersection curves computed
using the natural variant at the initial level. The main
difference between the neighborhood and graph
versions lies in the set of faces considered. At a given
level of subdivision, the first considers a set of faces
per object, while the second considers several subsets
of the precedent set by the intermediary of a bipartite
graph.

2. NATURAL ALGORITHM

Computing intersection curves is carried out in
several steps. First, the faces of two surfaces are
indexed into two categories: intersecting faces and
others. Only intersecting pairs of faces are considered
in the next step of the algorithm. The face/face
intersection results in a set of intersection points
which will be sorted and connected in order to obtain
piecewise linear approximations of the intersection
curves.

Detecting face intersection

This preliminary step consists in using the enclosing
boxes collision tests as a first filter to eliminate faces
clearly disjoined from any future investigation. Then,
intersections of all the remaining faces will be
calculated. The complexity of this algorithm becomes
O(m, xn,) where m, and n, respectively are

smaller than the original numbers of facesm and n
of the surfaces S, and S, .

Computing face intersection

Several methods may be considered to compute
intersection points. O'Brien and Manocha [Obr00]
compute the intersection by making the intersection

of the planes carrying the faces and then by taking the
restriction on the faces. They are thus obliged to
distinguish between two cases: the case in which the
two intersection points belong to the edges of the
same face and the case in which they are carried by
segments of different faces (Figure 2).

Figure 2. Two cases of face/face intersection.

Another solution consists in computing the
intersections of all the segments of a face with the
other face. The straight line/plane intersection is
calculated first. The equation of the straight line
being written in parametric form, the restriction on
the segment is carried out by checking that the value
of the parameter is in the interval [0,1]. Then we
need only to check that the intersection point belongs
to the face, which is easily done by comparing the
surface of the face with the sum of the surfaces of the
triangles formed by the intersection point and the face
vertices. We chose to implement this second solution.

The polygonal intersection curve

Point sorting is easily carried out thanks to the
structure of the intersection point which stores the
point coordinates, the faces of each object at the
origin of this point and the edge on which this point is
located. Thus the ends of the intersection edges
correspond to the intersection points pointing to two
identical faces. Then, the edges are connected by
using the winged edge structure [Bau72]. Figure 3
represents an example of the intersection curve and
the intersecting faces at the initial level.

Figure 3. Intersection curve and intersecting faces
at the initial level.

3. NEIGHBORHOOD ALGORITHM
This algorithm only considers the faces of the
neighborhood of the previous intersecting curves as
in [Obr00]. The calculation of the intersection at the
initial level for this algorithm is carried out using the
natural algorithm. Intersecting pairs of faces of two
surfaces are thus determined.

Let I, be the face set of the surface S, involved in
the intersection.

The first step of this algorithm consists in finding the
1-neighborhood 4/ (I,). Let us remember that this 1-
neighborhood contains the set I, as well as all faces

adjacent to these faces by a vertex. The sets 7/ (1))
and ¥ (1,) are represented in the Figure 4.a.
v (1)

v (1)

a)

Figure 4. Intersecting faces. a) 1-neighborhood
9 (1.). b) 1-neighborhood subdivided 1/ ().

In fact, the 2-neighborhood %) (1) is nevertheless
preserved in order to correctly calculate the 2-
neighborhood %/ (I) of the set of sub-faces of I,
obtained by the subdivision of Loop. Indeed, in
certain cases, the faces of %) (I,) are required to
find the entire neighborhood at the following level.
Then, the natural algorithm is again used to test
intersections between # (I,) and (). The
intersection curve obtained at level one is given in
Figure 5.

Figure 5. Intersection at level 1. Left: The
intersection curve. Right: Intersecting faces

This process will be repeated z times to obtain the
intersection curves at a given subdivision level.

This algorithm significantly reduces the number of
faces involved in the intersection calculation; it is
consequently much faster than the natural algorithm.

4. ALGORITHM USING A BIPARTITE

GRAPH
This algorithm uses a bipartite graph to reduce the
number of intersections to be tested.

The nodes of one column represent the faces of the
first object and those of the second column represent
the faces of the second object. Intersecting faces are
connected by edges.

Once this graph is established, the neighborhoods of
F, and G, are added to the graph. The intersections

of each face of 9/ (1,) with all the faces of ¥ (I,)

are no longer tested, as the algorithm consists in
computing only intersections between sub-parts of
these sets. Indeed, the bipartite graph of intersection
associates to each intersecting face F] of I, aset G,

of I, intersecting faces, so that one needs only to
calculate the intersections between elements of
9 (F) and elements of 4/ (G) connected by an

1

edge.

Below, we apply this algorithm to a simple example
(to reduce the number of graph vertices): the
intersection of the bunny (694 faces) with a smaller
band (10 faces) is considered.

Our algorithms is composed by the following steps:
construction of the initial level bipartite graph (Figure
6), neighborhood computation (Figure 7),
computation of partial subdivision (Figure 8). Finally,
the intersecting couples of faces are determinated.

—
o
—

O i
._c:

O i

Figure 6. Construction of the initial bipartite
graph.

L I

() (o)
()| o o |%(G)

e’

—_— ~—
v(e)| " / “ |ue)
Wl |le] >

 —

_J\T

o |7 (G)

Figure 7. Computation of the 1-neighborhoods
V. (F) and 4, (G,).

1

Figure 8. Obtaining %) (F) and % (G,)
partial subdivision of 7/ (F) and 7 (G,).

This variant is more efficient than the first and the
second variants presented above. The fact that it is
based on a bipartite graph reduces the number of tests
for intersecting faces at each subdivision level.

5. CONCLUSION

In this paper, we described three variants of an
algorithm for the computation of intersection curves
between two objects modeled by subdivision
surfaces. The natural algorithm is a non optimized
variant that can be interesting to use when the
intersecting subdivision surfaces have a small number
of faces. The other two variants proposed are
respectively based on the concepts of 1-neighborhood
and bipartite graph. In particular, determining pairs of
intersecting faces of the third algorithm (Section 4)
may be improved in order to avoid systematically

computing the intersection between #/(F) and
w (G,) for eah F eI, G €I, and

1
(E,Gz.-,) € E of G". These algorithms compute

intersection curves between two objects more quickly
than the natural algorithm, in particular when the
number of faces involved is very high. It now remains
to integrate this improvement into the framework of
boolean operations.

6. REFERENCES

[Abd96] K. Abdel-Malek, H. J. Yeh. “Determining
intersection curves between surfaces of two
solids”. Computer Aided Design, vol. 28-6/7, pp
539-549, 1996.

[Baj88] C. L. Bajaj, C. M. Hoffmann, J. E. Hopcroft,
R. E. Lynch. “Tracing surface intersections”.
Computer Aided Geometric Design, vol. 5, pp
285-307, 1988.

[Bar87] R. E. Barnhill, G. Farin, M. Jordan, B. R.
Piper. “Surface/surface intersection”. Computer
Aided Geometric Design, vol. 4-3, pp 3-16, 1987.

[Bau72] Bruce G. Baumgart, “Winged edge
polyhedron representation”, Technical Report CS-
TR-72-320, pp 5, 1972.

[Boe91] E. Boender. “A survey of intersection
algorithms for curved surfaces”. Computer &
Graphics, vol. 15-1, pp 99-115, 1991.

[Cat78] E. Catmull, J. Clark. “Recursively generated
B-spline surfaces on arbitrary topological
meshes”. Computer Aided Design, vol. 9-6, pp
350-355, 1978.

[Cha87] V. Chandru, B. S. Kochar. “Geometric
Modeling: Algorithms and NEW Trends”.
Chapter Analytic Techniques for Geometric
Intersection Problems, pp 305-318, SIAM,
Philadelphia, PA, 1987.

[Doo78] D. Doo, M. Sabin. “Behaviour of recursive
subdivision surfaces near extraordinary points”.
Computer Aided Design, vol. 9-6, pp 356-360,
1978.

[Kob00] L. Kobbelt. “Sqrt(3)-Subdivision”.
Computer Graphics Proceedings, Annual
Conference Series, pp. 103-112, July 2000.

[Kri94] S. Krishnan, A. Narkhede, D. Manocha.
“Boole: A System to Compute boolean
Combinations of Sculptured Solids”. Technical
Report, Department of Computer Science,
University of North California, 1994.

[Loo87] C. Loop. “Smooth Subdivision Surfaces
Based on Triangles”. Master’s thesis, University
of Utah, Department of Mathematics, 1987.

[Obr00] D. A. O’Brien, D. Manocha. “Calculating
Intersection Curve Approximations for
Subdivision Surfaces”, 2001.
http://www.cs.unc.edu/~obrien/courses/comp258/
project.html

[Pat93] N. M. Patrikalakis. “Surface-to-surface
intersections”. IEEE Computer Graphics &
Applications, vol. 13-1, pp 89-95, January 1993.

[Vel00] L. Velho, D. Zorin. “4-8 Subdivision”.
Computer Aided Geometric Design, volume 18-5,
pp 397-427, 2000.

[Zor00] D. Zorin. “Subdivision Zoo”. SIGGRAPH
2000 Course Notes, Subdivision for Modeling
and Animation, Chap. 4, pp 65-98, 2000.

