Název: | Automatic plant recognition system for challenging natural plant species |
Autoři: | Kazerouni, Masoud Fathi Schlemper, Jens Kuhnert, Klaus-Dieter |
Citace zdrojového dokumentu: | WSCG '2017: short communications proceedings: The 25th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2016 in co-operation with EUROGRAPHICS: University of West Bohemia, Plzen, Czech RepublicMay 29 - June 2 2017, p. 81-90. |
Datum vydání: | 2017 |
Nakladatel: | Václav Skala - UNION Agency |
Typ dokumentu: | konferenční příspěvek conferenceObject |
URI: | wscg.zcu.cz/WSCG2017/!!_CSRN-2702.pdf http://hdl.handle.net/11025/29738 |
ISBN: | 978-80-86943-45-9 |
ISSN: | 2464-4617 |
Klíčová slova: | komponent;SURF;kombinace;FAST;HARRIS;extrakce vlastností;detekce funkcí;přirozené obrazy;přirozené rozpoznání druhů rostlin;povětrnostní podmínky;intenzita světla |
Klíčová slova v dalším jazyce: | component;SURF;combination;FAST;HARRIS;feature extraction;feature detection;natural images;natural plant species recognition;weather condition;light intensity |
Abstrakt: | Photosynthesis is one of turning points to shape the world. Plants use this process to convert light energy into chemical energy. Some of the early microorganisms evolved a way to use the energy from sunlight to make sugar out of simpler molecules, but unlike green plants today, the first photosynthesizing organisms did not release oxygen as waste product, so there was no oxygen in the air. Plants are very busy factories and leaves are the main place for production. A useful plant recognition system is capable of identification of different species in natural environment. In natural environment, plants and leaves grow in different regions and climates. During day, variation of light intensity can be considered as an important factor. Thus, recognition of species in different conditions is a real need as plants are ubiquitous in human life. A dataset of natural images has been utilized. The dataset contains four different plant species of Siegerland, Germany. Modern combined description algorithms, SURF, FAST-SURF, and HARRIS-SURF, have been carried out to implement a reliable system for plants species recognition and classification in natural environment. One of well known methods in machine learning community, Support Vector Machine, has been applied in the implemented systems. All steps of system’s implementation are described in related sections. The highest obtained accuracy belongs to the implemented system by means of SURF algorithm and equals to 93.9575. |
Práva: | © Václav Skala - UNION Agency |
Vyskytuje se v kolekcích: | WSCG '2017: Short Papers Proceedings |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
Kazerouni.pdf | Plný text | 1,25 MB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/29738
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.