Název: Human action recognition from RGBD videos based on retina model and local binary pattern features
Autoři: Al-Akam, Rawya
Al-Darraji, Salah
Paulus, Dietrich
Citace zdrojového dokumentu: WSCG 2018: poster papers proceedings: 26th International Conference in Central Europe on Computer Graphics, Visualization and Computer Visionin co-operation with EUROGRAPHICS Association, p. 1-7.
Datum vydání: 2018
Nakladatel: Václav Skala - UNION Agency
Typ dokumentu: konferenční příspěvek
conferenceObject
URI: wscg.zcu.cz/WSCG2018/!!_CSRN-2803.pdf
http://hdl.handle.net/11025/34631
ISBN: 978-80-86943-42-8
ISSN: 2464-4617
Klíčová slova: rozpoznání akce;RGBD videa;lokální binární vzory;model sítnice;náhodný les
Klíčová slova v dalším jazyce: action recognition;RGBD videos;local binary pattern;retina model;random forest
Abstrakt: Human action recognition from the videos is one of the most attractive topics in computer vision during the last decades due to wide applications development. This research has mainly focused on learning and recognizing actions from RGB and Depth videos (RGBD). RGBD is a powerful source of data providing the aligned depth information which has great ability to improve the performance of different problems in image understanding and video processing. In this work, a novel system for human action recognition is proposed to extract distinctive spatio and temporal feature vectors for presenting the spatio-temporal evolutions from a set of training and testing video sequences of different actions. The feature vectors are computed in two steps: The First step is the motion detection from all video frames by using spatio-temporal retina model. This model gives a good structuring of video data by removing the noise and illumination variation and is used to detect potentially salient areas, these areas represent the motion information of the moving object in each frame of video sequences. In the Second step, because of human motion can be seen as a type of texture pattern, the local binary pattern descriptor (LBP) is used to extract features from the spatio-temporal salient areas and formulated them as a histogram to make the bag of feature vectors. To evaluate the performance of the proposed method, the k-means clustering, and Random Forest classification is applied on the bag of feature vectors. This approach is demonstrated that our system achieves superior performance in comparison with the state-of-the-art and all experimental results are depending on two public RGBD datasets.
Práva: © Václav Skala - Union Agency
Vyskytuje se v kolekcích:WSCG 2018: Poster Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Al-Akam.pdfPlný text1,65 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/34631

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.