Full metadata record
DC pole | Hodnota | Jazyk |
---|---|---|
dc.contributor.author | Lee, Hanhaesol | |
dc.contributor.author | Sa, Jaewon | |
dc.contributor.author | Chung, Yongwha | |
dc.contributor.author | Park, Daihee | |
dc.contributor.author | Kim, Hakjae | |
dc.contributor.editor | Skala, Václav | |
dc.date.accessioned | 2019-10-22T08:42:07Z | |
dc.date.available | 2019-10-22T08:42:07Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | WSCG 2019: full papers proceedings: 27. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 17-25. | en |
dc.identifier.isbn | 978-80-86943-37-4 (CD/-ROM) | |
dc.identifier.issn | 2464–4617 (print) | |
dc.identifier.issn | 2464-4625 (CD/DVD) | |
dc.identifier.uri | http://hdl.handle.net/11025/35605 | |
dc.format | 9 s. | cs |
dc.format.mimetype | application/odt | |
dc.language.iso | en | en |
dc.publisher | Václav Skala - UNION Agency | cs |
dc.rights | © Václav Skala - UNION Agency | cs |
dc.subject | sledování prasat | cs |
dc.subject | překrývající se prasata | cs |
dc.subject | oddělení | cs |
dc.subject | hluboké učení | cs |
dc.subject | YOLO | cs |
dc.subject | You Only Look Once | cs |
dc.title | Deep Learning-based Overlapping-Pigs Separation by Balancing Accuracy and Execution Time | en |
dc.type | konferenční příspěvek | cs |
dc.type | conferenceObject | en |
dc.rights.access | openAccess | en |
dc.type.version | publishedVersion | en |
dc.description.abstract-translated | The crowded environment of a pig farm is highly vulnerable to the spread of infectious diseases such as foot-andmouth disease, and studies have been conducted to automatically analyze behavior of pigs in a crowded pig farm through a video surveillance system using a top-view camera. Although it is required to correctly separate overlapping-pigs for tracking each individual pigs, extracting the boundaries of each pig fast and accurately is a challenging issue due to the complicated occlusion patterns such as X shape and T shape. In this study, we propose a fast and accurate method to separate overlapping-pigs not only by exploiting the advantage (i.e., one of the fast deep learning-based object detectors) of You Only Look Once, YOLO, but also by overcoming the disadvantage (i.e., the axis aligned bounding box-based object detector) of YOLO with the test-time data augmentation of rotation. Experimental results with the occlusion patterns between the overlapping-pigs show that the proposed method can provide better accuracy and faster processing speed than one of the state-of-the-art deep learningbased segmentation techniques such as Mask R-CNN (i.e., the performance improvement over Mask R-CNN was about 11 times, in terms of the accuracy/processing speed performance metrics). | en |
dc.subject.translated | pig monitoring | en |
dc.subject.translated | overlapping-pigs | en |
dc.subject.translated | separation | en |
dc.subject.translated | deep learning | en |
dc.subject.translated | YOLO | en |
dc.subject.translated | You Only Look Once | en |
dc.identifier.doi | https://doi.org/10.24132/CSRN.2019.2901.1.3 | |
dc.type.status | Peer-reviewed | en |
Vyskytuje se v kolekcích: | WSCG 2019: Full Papers Proceedings |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
Lee.pdf | Plný text | 1,09 MB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/35605
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.