Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorGabriel, František
dc.contributor.authorKursová, Lucie
dc.date.accessioned2019-11-11T11:00:22Z-
dc.date.available2019-11-11T11:00:22Z-
dc.date.issued2019
dc.identifier.citationVČELÁK, P., KRYL, M., KRATOCHVÍL, M., KLEČKOVÁ, J. Identification and classification of DICOM files with burned-in text content. International Journal of Medical Informatics, 2019, roč. 126, č. JUN 2019, s. 128-137. ISSN 1386-5056.en
dc.identifier.issn0231-5823
dc.identifier.uri2-s2.0-85063996088
dc.identifier.urihttp://hdl.handle.net/11025/35858
dc.description.abstractOznačení ganerbenburg považují někteří autoři za dispoziční typ hradů. Článek upozorňuje na chybnost tohoto přístupu a doporučuje užívání jiného druhového jména a jeho definici.cs
dc.format10 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherElsevieren
dc.relation.ispartofseriesInternational Journal of Medical Informaticsen
dc.rightsPlný text je přístupný v rámci univerzity přihlášeným uživatelům.cs
dc.rights© Elsevieren
dc.titleTypové zařazení hradu Skála u Přešticcs
dc.title.alternativeTypological classification of the Skála castle, near Přešticeen
dc.typečlánekcs
dc.typearticleen
dc.rights.accessrestrictedAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedBackground: Protected health information burned in pixel data is not indicated for various reasons in DICOM. It complicates the secondary use of such data. In recent years, there have been several attempts to anonymize or de-identify DICOM files. Existing approaches have different constraints. No completely reliable solution exists. Especially for large datasets, it is necessary to quickly analyse and identify files potentially violating privacy. Methods: Classification is based on adaptive-iterative algorithm designed to identify one of three classes. There are several image transformations, optical character recognition, and filters; then a local decision is made. A confirmed local decision is the final one. The classifier was trained on a dataset composed of 15,334 images of various modalities. Results: The false positive rates are in all cases below 4.00%, and 1.81% in the mission-critical problem of detecting protected health information. The classifier's weighted average recall was 94.85%, the weighted average inverse recall was 97.42% and Cohen's Kappa coefficient was 0.920. Conclusion: The proposed novel approach for classification of burned-in text is highly configurable and able to analyse images from different modalities with a noisy background. The solution was validated and is intended to identify DICOM files that need to have restricted access or be thoroughly de-identified due to privacy issues. Unlike with existing tools, the recognised text, including its coordinates, can be further used for de-identification.en
dc.subject.translatedcastleen
dc.subject.translatedMiddle Agesen
dc.subject.translatedcastle coreen
dc.identifier.doi10.5817/AH2019-2-3
dc.type.statusPeer-revieweden
dc.identifier.obd43926908
dc.project.IDLO1506/PUNTIS - Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnostcs
Vyskytuje se v kolekcích:Články / Articles (NTIS)
Články / Articles (KIV)
OBD

Soubory připojené k záznamu:
Soubor VelikostFormát 
Gabriel - Kursová[1].pdf868,07 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/35858

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

hledání
navigace
  1. DSpace at University of West Bohemia
  2. Publikační činnost / Publications
  3. OBD