Název: Foreground-aware Dense Depth Estimation for 360 Images
Autoři: Feng, Qi
Shum, Hubert P. H.
Shimamura, Ryo
Morishima, Shigeo
Citace zdrojového dokumentu: Journal of WSCG. 2020, vol. 28, no. 1-2, p. 79-88.
Datum vydání: 2020
Nakladatel: Václav Skala - UNION Agency
Typ dokumentu: článek
article
URI: http://wscg.zcu.cz/WSCG2020/2020-J_WSCG-1-2.pdf
http://hdl.handle.net/11025/38428
ISSN: 1213-6972 (print)
1213-6980 (CD-ROM)
1213-6964 (on-line)
Klíčová slova: odhad hloubky;porozumění scéně;rozšiřování dat;360 obrázků
Klíčová slova v dalším jazyce: depth estimation;scene understanding;data augmentation;360 images
Abstrakt v dalším jazyce: With 360 imaging devices becoming widely accessible, omnidirectional content has gained popularity in multiple fields. The ability to estimate depth from a single omnidirectional image can benefit applications such as robotics navigation and virtual reality. However, existing depth estimation approaches produce sub-optimal results on real-world omnidirectional images with dynamic foreground objects. On the one hand, capture-based methods cannot obtain the foreground due to the limitations of the scanning and stitching schemes. On the other hand, it is challenging for synthesis-based methods to generate highly-realistic virtual foreground objects that are comparable to the real-world ones. In this paper, we propose to augment datasets with realistic foreground objects using an image-based approach, which produces a foreground-aware photorealistic dataset for machine learning algorithms. By exploiting a novel scale-invariant RGB-D orrespondence in the spherical domain, we repurpose abundant non-omnidirectional datasets to include realistic foreground objects with correct distortions. We further propose a novel auxiliary deep neural network to estimate both the depth of the omnidirectional images and the mask of the foreground objects, where the two tasks facilitate each other. A new local depth loss considers small regions of interests and ensures that their depth estimations are not smoothed out during the global gradient’s optimization. We demonstrate the system using human as the foreground due to its complexity and contextual importance, while the framework can be generalized to any other foreground objects. Experimental results demonstrate more consistent global estimations and more accurate local estimations compared with state-of-the-arts.
Práva: © Václav Skala - UNION Agency
Vyskytuje se v kolekcích:Volume 28, Number 1-2 (2020)

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Feng.pdfPlný text10,45 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/38428

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.