Název: | Adjusting BERT’s Pooling Layer for Large-Scale Multi-Label Text Classification |
Autoři: | Lehečka, Jan Švec, Jan Ircing, Pavel Šmídl, Luboš |
Citace zdrojového dokumentu: | LEHEČKA, J., ŠVEC, J., IRCING, P., ŠMÍDL, L. Adjusting BERT’s Pooling Layer for Large-Scale Multi-Label Text Classification. In: Text, Speech, and Dialogue 23rd International Conference, TSD 2020, Brno, Czech Republic, September 8-11, 2020, Proceedings. Cham: Springer, 2020. s. 214-221. ISBN 978-3-030-58322-4, ISSN 0302-9743. |
Datum vydání: | 2020 |
Nakladatel: | Springer |
Typ dokumentu: | konferenční příspěvek conferenceObject |
URI: | 2-s2.0-85091136861 http://hdl.handle.net/11025/42716 |
ISBN: | 978-3-030-58322-4 |
ISSN: | 0302-9743 |
Klíčová slova v dalším jazyce: | Text classification, BERT model |
Abstrakt v dalším jazyce: | In this paper, we present our experiments with BERT models in the task of Large-scale Multi-label Text Classification (LMTC). In the LMTC task, each text document can have multiple class labels, while the total number of classes is in the order of thousands. We propose a pooling layer architecture on top of BERT models, which improves the quality of classification by using information from the standard [CLS] token in combination with pooled sequence output. We demonstrate the improvements on Wikipedia datasets in three different languages using public pre-trained BERT models. |
Práva: | Plný text není přístupný. © Springer |
Vyskytuje se v kolekcích: | Konferenční příspěvky / Conference papers (NTIS) Konferenční příspěvky / Conference Papers (KKY) OBD |
Soubory připojené k záznamu:
Soubor | Velikost | Formát | |
---|---|---|---|
Lehečka2020_Chapter_AdjustingBERTSPoolingLayerForL.pdf | 299,49 kB | Adobe PDF | Zobrazit/otevřít Vyžádat kopii |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/42716
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.