Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorSido, Jakub
dc.date.accessioned2021-04-09T06:03:12Z-
dc.date.available2021-04-09T06:03:12Z-
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/11025/43167
dc.identifier.urihttps://www.kiv.zcu.cz/cz/vyzkum/publikace/technicke-zpravy/
dc.description.sponsorshipGS-2019-018 Processing of heterogeneousdata and its specialized applicationsen
dc.format56 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherUniversity of West Bohemiaen
dc.rights© 2020 University of West Bohemiaen
dc.subjectpřirozený jazykcs
dc.subjectgenerativní modelycs
dc.subjecttextová doménacs
dc.subjectumělé neuronové sítěcs
dc.titleNatural Language Generationen
dc.typezprávacs
dc.typereporten
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedComputational systems use natural language for communication with humans moreoften in the last years. This work summarises state-of-the-art approaches in thefield of generative models, especially in the text domain. It offers a complex study ofspecific problems known from this domain and related ones like adversarial training,reinforcement learning, artificial neural networks, etc. It also addresses the usageof these models in the context of non-generative approaches and the possibility ofcombining both.en
dc.subject.translatednatural languageen
dc.subject.translatedgenerative modelsen
dc.subject.translatedtext domainen
dc.subject.translatedartificial neural networksen
Vyskytuje se v kolekcích:Zprávy / Reports (KIV)

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Rigo_Sido_2020_05.pdfPlný text5,63 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/43167

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.