Název: Lift: An Educational Interactive Stochastic Ray Tracing Framework with AI-Accelerated Denoiser
Autoři: Soares, Gonçalo
Pereira, João Madeiras
Citace zdrojového dokumentu: WSCG 2021: full papers proceedings: 29. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 325-334.
Datum vydání: 2021
Nakladatel: Václav Skala - UNION Agency
Typ dokumentu: conferenceObject
konferenční příspěvek
URI: http://hdl.handle.net/11025/45039
ISBN: 978-80-86943-34-3
ISSN: 2464-4617
2464–4625(CD/DVD)
Klíčová slova: vzdělávací rámec pro sledování paprsků;Nvidia RTX;Vulkan;trasování cesty;AI-accelerated Denoiser
Klíčová slova v dalším jazyce: Educational Ray Tracing framework;Nvidia RTX;Vulkan;path tracing;AI-accelerated Denoiser
Abstrakt v dalším jazyce: Real-time physically based rendering has long been looked at as the holy grail in Computer Graphics. With theintroduction of Nvidia RTX-enabled GPUs family, light transport simulations under real-time constraint startedto look like a reality. This paper presents Lift, an educational framework written in C++ that explores the RTXhardware pipeline by using the low-level Vulkan API and its Ray Tracing extension, recently made available byKhronos Group. Furthermore, to accomplish low variance rendered images, we integrated the AI-based denoiseravailable from the Nvidia ́s OptiX framework. Lift’s development arose primarily in the context of the graduate3D Programming course taught at Instituto Superior Técnico and Master Theses focused on Real-Time Ray Trac-ing and provides the foundations for laboratory assignments and projects development. The platform aims to makeeasier students to learn and to develop, by programming the shaders of the RT pipeline, their physically-based ren-dering approaches and to compare them with the built-in progressive unidirectional and bidirectional path tracers.The GUI allows a user to specify camera settings and navigation speed, to select the input scene as well as therendering method, to define the number of samples per pixel and the path length as well as to denoise the generatedimage either every frame or just the final frame. Statistics related with the timings, image resolution and totalnumber of accumulated samples are provided too. Such platform will teach that nowadays physically-accurateimages can be rendered in real-time under different lighting conditions and how well a denoiser can reconstructimages rendered with just one sample per pixel.
Práva: © Václav Skala - UNION Agency
Vyskytuje se v kolekcích:WSCG 2021: Full Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
K05.pdfPlný text17,74 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/45039

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.