Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorHausdorf, Alrik
dc.contributor.authorMüller, Lydia
dc.contributor.authorScheuermann, Gerik
dc.contributor.authorNiekler, Andreas
dc.contributor.authorWiegreffe, Daniel
dc.contributor.editorSkala, Václav
dc.date.accessioned2022-09-01T08:56:06Z
dc.date.available2022-09-01T08:56:06Z
dc.date.issued2022
dc.identifier.citationWSCG 2022: full papers proceedings: 30. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 76-85.en
dc.identifier.isbn978-80-86943-33-6
dc.identifier.issn2464-4617
dc.identifier.urihttp://hdl.handle.net/11025/49581
dc.format10 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencyen
dc.rights© Václav Skala - UNION Agencyen
dc.subjectaplikace motivovaná vizualizacecs
dc.subjectchatbotcs
dc.subjectznalostní báze chatbotůcs
dc.subjectúdržba chatbotacs
dc.subjectrozhodovací stromcs
dc.titleTowards an understanding of knowledge bases of chatbot systemsen
dc.typeconferenceObjecten
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedA chatbot can automatically process a user’s request, e.g. to provide a requested information. In doing so, the user starts a conversation with the chatbot and can specify the request by further inquiry. Due to the developments in the field of NLP in recent years, algorithmic text comprehension has been significantly improved. As a result, chatbots are increasingly used by companies and other institutions for various tasks such as order processes or service requests. Knowledge bases are often used to answer users queries, but these are usually curated manually in various text files, prone to errors. Visual methods can help the expert to identify common problems in the knowledge base and can provide an overview of the chatbot system. In this paper, we present Chatbot Explorer, a system to visually assist the expert to understand, explore, and manage a knowledge base of different chatbot systems. For this purpose, we provide a tree-based visualization of the knowledge base as an overview. For a detailed analysis, the expert can use appropriate visualizations to drill down the analysis to the level of individual elements of a specific story to identify problems within the knowledge base. We support the expert with automatic detection of possible problems, which can be visually highlighted. Additionally, the expert can also change the order of the queries to optimize the conversation lengths and it is possible to add new content. To develop our solution, we have conducted an iterative design process with domain experts and performed two user evaluations. The evaluations and the feedback from our domain experts have shown that our solution can significantly improve the maintainability of chatbot knowledge bases.en
dc.subject.translatedapplication motivated visualizationen
dc.subject.translatedchatboten
dc.subject.translatedchatbot knowledge baseen
dc.subject.translatedchatbot maintenanceen
dc.subject.translateddecision treeen
dc.identifier.doihttps://www.doi.org/10.24132/CSRN.3201.10
dc.type.statusPeer-revieweden
Vyskytuje se v kolekcích:WSCG 2022: Full Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
B23-full.pdfPlný text2,17 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/49581

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.