Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorYancey, Robin
dc.contributor.editorSkala, Václav
dc.date.accessioned2022-09-02T08:33:22Z-
dc.date.available2022-09-02T08:33:22Z-
dc.date.issued2023
dc.identifier.citationWSCG 2022: full papers proceedings: 30. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 256-264.en
dc.identifier.isbn978-80-86943-33-6
dc.identifier.issn2464-4617
dc.identifier.urihttp://hdl.handle.net/11025/49602
dc.format9 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencyen
dc.rights© Václav Skala - UNION Agencyen
dc.subjectYOLOcs
dc.subjecthluboké učenícs
dc.subjectpočítání mitózycs
dc.subjectrakovina prsucs
dc.subjecthistopatologiecs
dc.subjectstrojové učenícs
dc.subjectdetekce v reálném časecs
dc.titleParallel YOLO-based Model for Real-time Mitosis Countingen
dc.typeconferenceObjecten
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedIt is estimated that breast cancer incidences will increase by more than 50% by 2030 from 2011. Mitosis counting is one of the most commonly used methods of assessing the level of progression, and is a routine task for every patient diagnosed with invasive cancer. Although mitotic count is the strongest prognostic value, it is a tedious and subjective task with poor reproducibility, especially for non-experts. Object detection networks such as Faster RCNN have recently been adapted to medical applications to automatically localize regions of interest better than a CNN alone. However, the speed and accuracy of newer state-of-the-art models such as YOLO are now leaders in object detection, which had yet be applied to mitosis counting. Moreover, combining results of multiple YOLO versions run in parallel and increasing the size of the data in a way that is appropriate for the specific task are some of the other methods can be used to further improve the score overall. Using these techniques the highest F-scores of 0.95 and 0.96 on the MITOS-ATYPIA 2014 challenge and MITOS-ATYPIA 2012 challenge mitosis counting datasets are achieved, respectively.en
dc.subject.translatedYOLOen
dc.subject.translateddeep learningen
dc.subject.translatedmitosis countingen
dc.subject.translatedbreast canceren
dc.subject.translatedhistopathologyen
dc.subject.translatedmachine learningen
dc.subject.translatedreal-time detectionen
dc.identifier.doihttps://www.doi.org/10.24132/CSRN.3201.32
dc.type.statusPeer-revieweden
Vyskytuje se v kolekcích:WSCG 2022: Full Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
D29-full.pdfPlný text1,4 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/49602

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.