Full metadata record
DC pole | Hodnota | Jazyk |
---|---|---|
dc.contributor.author | Karban, Pavel | |
dc.contributor.author | Petrášová, Iveta | |
dc.contributor.author | Doležel, Ivo | |
dc.date.accessioned | 2023-02-06T11:00:22Z | - |
dc.date.available | 2023-02-06T11:00:22Z | - |
dc.date.issued | 2022 | |
dc.identifier.citation | KARBAN, P. PETRÁŠOVÁ, I. DOLEŽEL, I. DC Motor Benchmark with Prediction Based on Mixture of Experts. In 14th International Conference ELEKTRO, ELEKTRO 2022 : /proceedings/. Piscataway: IEEE, 2022. s. nestránkováno. ISBN: 978-1-66546-726-1 , ISSN: 2691-0616 | cs |
dc.identifier.isbn | 978-1-66546-726-1 | |
dc.identifier.issn | 2691-0616 | |
dc.identifier.uri | 2-s2.0-85133959297 | |
dc.identifier.uri | http://hdl.handle.net/11025/51328 | |
dc.description.abstract | The Mixture of Experts (MoE)–based approach is applied to verify the possibility of using surrogate models for searching the optima of complex multicriteria problems with constraints. This approach can successfully solve problems when the design space is limited by a higher number of constraints and traditional methods of Design of Experiments (DoE) in conjunction with one surrogate model are not able to partition the design space acceptably enough for further prediction. The methodology is tested on a well-known DC motor benchmark, where the electromagnetic and temperature fields were solved analytically, in a simplified form. | de |
dc.format | 5 s. | cs |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | en |
dc.publisher | IEEE | en |
dc.relation.ispartofseries | 14th International Conference ELEKTRO, ELEKTRO 2022 : /proceedings/ | en |
dc.rights | Plný text je přístupný v rámci univerzity přihlášeným uživatelům. | cs |
dc.rights | © IEEE | en |
dc.title | DC Motor Benchmark with Prediction Based on Mixture of Experts | en |
dc.type | konferenční příspěvek | cs |
dc.type | ConferenceObject | en |
dc.rights.access | restrictedAccess | en |
dc.type.version | publishedVersion | en |
dc.description.abstract-translated | The Mixture of Experts (MoE)–based approach is applied to verify the possibility of using surrogate models for searching the optima of complex multicriteria problems with constraints. This approach can successfully solve problems when the design space is limited by a higher number of constraints and traditional methods of Design of Experiments (DoE) in conjunction with one surrogate model are not able to partition the design space acceptably enough for further prediction. The methodology is tested on a well-known DC motor benchmark, where the electromagnetic and temperature fields were solved analytically, in a simplified form. | en |
dc.subject.translated | Brushless DC motor | en |
dc.subject.translated | analytical model | en |
dc.subject.translated | mixture of experts (MoE) | en |
dc.subject.translated | Gaussian process | en |
dc.subject.translated | optimization | en |
dc.identifier.doi | 10.1109/ELEKTRO53996.2022.9803676 | |
dc.type.status | Peer-reviewed | en |
dc.identifier.obd | 43938099 | |
dc.project.ID | SGS-2021-011/Rozvoj technik snižování řádu systému v elektrotechnických aplikacích | cs |
Vyskytuje se v kolekcích: | Konferenční příspěvky / Conference papers (RICE) Konferenční příspěvky / Conference Papers (KEP) OBD |
Soubory připojené k záznamu:
Soubor | Velikost | Formát | |
---|---|---|---|
DC_Motor_Benchmark_with_Prediction_Based_on_Mixture_of_Experts.pdf | 1,38 MB | Adobe PDF | Zobrazit/otevřít Vyžádat kopii |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/51328
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.