Název: | Control of ultrafast laser ablation efficiency by stress confinement due to strong electron localization in high-entropy alloys |
Autoři: | Redka, David Winter, Jan Gadelmeier, Christian Djuranovic, Alexander Glatzel, Uwe Minár, Jan Huber, Heinz Paul |
Citace zdrojového dokumentu: | REDKA, D. WINTER, J. GADELMEIER, CH. DJURANOVIC, A. GLATZEL, U. MINÁR, J. HUBER, HP. Control of ultrafast laser ablation efficiency by stress confinement due to strong electron localization in high-entropy alloys. APPLIED SURFACE SCIENCE, 2022, roč. 594, č. AUG 30 2022, s. nestránkováno. ISSN: 0169-4332 |
Datum vydání: | 2022 |
Nakladatel: | Elsevier |
Typ dokumentu: | článek article |
URI: | 2-s2.0-85129032983 http://hdl.handle.net/11025/51338 |
ISSN: | 0169-4332 |
Klíčová slova v dalším jazyce: | High-entropy alloy;CrMnFeCoNi;Ultrafast laser ablation;Pulse duration;Ablation efficiency;Stress confinement |
Abstrakt: | In the context of current state of the art, understanding the laser ablation efficiency decrease for pulse durations High-entropy alloy; CrMnFeCoNi; Ultrafast laser ablation; Pulse duration; Ablation efficiency; Stress confinementexceeding the mechanical relaxation time of a few ps remains a pending research question. A heuristic approach may be used to reveal the role of effective penetration depth on ablation efficiency. Extending familiar contributions of this quantity by a term related to the mechanical surface expansion during pulse irradiation, the relation of ablation efficiency and pulse duration is deciphered. Thus, longer pulses are coupled into an expanded surface, revealing a direct link to the violation of stress confinement. To best demonstrate this hypothesis, a material with high electron–phonon coupling as well as low thermal conductivity, i.e., strong electron localization, is required. These properties are accomplished by high-entropy alloys, and the CrMnFeCoNi alloy serves as prime candidate. We report on single-pulse ablation efficiency experiments of the CrMnFeCoNi alloy which are support by our proposed model. |
Abstrakt v dalším jazyce: | In the context of current state of the art, understanding the laser ablation efficiency decrease for pulse durations High-entropy alloy; CrMnFeCoNi; Ultrafast laser ablation; Pulse duration; Ablation efficiency; Stress confinementexceeding the mechanical relaxation time of a few ps remains a pending research question. A heuristic approach may be used to reveal the role of effective penetration depth on ablation efficiency. Extending familiar contributions of this quantity by a term related to the mechanical surface expansion during pulse irradiation, the relation of ablation efficiency and pulse duration is deciphered. Thus, longer pulses are coupled into an expanded surface, revealing a direct link to the violation of stress confinement. To best demonstrate this hypothesis, a material with high electron–phonon coupling as well as low thermal conductivity, i.e., strong electron localization, is required. These properties are accomplished by high-entropy alloys, and the CrMnFeCoNi alloy serves as prime candidate. We report on single-pulse ablation efficiency experiments of the CrMnFeCoNi alloy which are support by our proposed model. |
Práva: | © authors |
Vyskytuje se v kolekcích: | Články / Articles (RAM) OBD |
Soubory připojené k záznamu:
Soubor | Velikost | Formát | |
---|---|---|---|
RWG+22_Redka_Appl_Phys_HEA.pdf | 2,18 MB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/51338
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.