Název: | Anomaly Detection with Transformers in Face Anti-spoofing |
Autoři: | Abduh, Latifah Luma, Omar Ivrissimtzis, Ioannis |
Citace zdrojového dokumentu: | Journal of WSCG. 2023, vol. 31, no. 1-2, p. 91-98. |
Datum vydání: | 2023 |
Nakladatel: | Václav Skala - UNION Agency |
Typ dokumentu: | article článek |
URI: | http://hdl.handle.net/11025/54288 |
ISSN: | 1213 – 6972 (hard copy) 1213 – 6980 (CD-ROM) 1213 – 6964 (on-line) |
Klíčová slova: | útok na prezentaci obličeje;transformátor vidění;ResNet;detekce anomálií;jednotřídní klasifikace |
Klíčová slova v dalším jazyce: | face presentation attack;vision transformer;ResNet;anomaly detection;one-class classification |
Abstrakt v dalším jazyce: | Transformers are emerging as the new gold standard in various computer vision applications, and have already been used in face anti-spoofing demonstrating competitive performance. In this paper, we propose a network with the ViT transformer and ResNet as the backbone for anomaly detection in face anti-spoofing, and compare the performance of various one-class classifiers at the end of the pipeline, such as one-class SVM, Isolation Forest, and decoders. Test results on the RA and SiW databases show the proposed approach to be competitive as an anomaly detection method for face anti-spoofing. |
Práva: | © Václav Skala - UNION Agency |
Vyskytuje se v kolekcích: | Volume 31, Number 1-2 (2023) |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
!_2023-Journal_WSCG-101-108.pdf | Plný text | 2,07 MB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/54288
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.