Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorBálint, Csaba
dc.contributor.authorValasek, Gábor
dc.contributor.authorGergó, Lajos
dc.contributor.editorSkala, Václav
dc.date.accessioned2023-10-17T17:13:45Z
dc.date.available2023-10-17T17:13:45Z
dc.date.issued2023
dc.identifier.citationWSCG 2023: full papers proceedings: 1. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 292-299.en
dc.identifier.isbn978-80-86943-32-9
dc.identifier.issn2464–4617 (print)
dc.identifier.issn2464–4625 (CD/DVD)
dc.identifier.urihttp://hdl.handle.net/11025/54436
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencyen
dc.rights© Václav Skala - UNION Agencyen
dc.subjectkřivkycs
dc.subjectodhadcs
dc.subjectparametrizace délky obloukucs
dc.subjectpřirozená parametrizacecs
dc.titleLow-Rank Rational Approximation of Natural Trochoid Parameterizationsen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedArc-length or natural parametrization of curves traverses the shape with unit speed, enabling uniform sampling and straightforward manipulation of functions defined on the geometry. However, Farouki and Sakkalis proved that it is impossible to parametrize a plane or space curve as a rational polynomial of its arc-length, except for the straight line. Nonetheless, it is possible to obtain approximate natural parameterizations that are exact up to any epsilon. If the given family of curves possesses a small number of scalar degrees of freedom, this results in simple approximation formulae applicable in high-performance scenarios. To demonstrate this, we consider the problem of finding the natural parametrization of ellipses and cycloids. This requires the inversion of elliptic integrals of the second kind. To this end, we formulate a two-dimensional approximation problem based on machine-epsilon exact Chebhysev proxies for the exact solutions. We also derive approximate low-rank and low-degree rational natural parametrizations via singular value decomposition. The resulting formulae have minimal memory and computational footprint, making them ideal for computer graphics applications.en
dc.subject.translatedcurvesen
dc.subject.translatedapproximationen
dc.subject.translatedArc-length parametrizationen
dc.subject.translatednatural parametrizationen
dc.identifier.doihttps://www.doi.org/10.24132/CSRN.3301.91
dc.type.statusPeer-revieweden
Vyskytuje se v kolekcích:WSCG 2023: Full Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
G41-full.pdfPlný text4,7 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/54436

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.