Full metadata record
DC pole | Hodnota | Jazyk |
---|---|---|
dc.contributor.author | Bálint, Csaba | |
dc.contributor.author | Valasek, Gábor | |
dc.contributor.author | Gergó, Lajos | |
dc.contributor.editor | Skala, Václav | |
dc.date.accessioned | 2023-10-17T17:13:45Z | |
dc.date.available | 2023-10-17T17:13:45Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | WSCG 2023: full papers proceedings: 1. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 292-299. | en |
dc.identifier.isbn | 978-80-86943-32-9 | |
dc.identifier.issn | 2464–4617 (print) | |
dc.identifier.issn | 2464–4625 (CD/DVD) | |
dc.identifier.uri | http://hdl.handle.net/11025/54436 | |
dc.format | 8 s. | cs |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | en |
dc.publisher | Václav Skala - UNION Agency | en |
dc.rights | © Václav Skala - UNION Agency | en |
dc.subject | křivky | cs |
dc.subject | odhad | cs |
dc.subject | parametrizace délky oblouku | cs |
dc.subject | přirozená parametrizace | cs |
dc.title | Low-Rank Rational Approximation of Natural Trochoid Parameterizations | en |
dc.type | konferenční příspěvek | cs |
dc.type | conferenceObject | en |
dc.rights.access | openAccess | en |
dc.type.version | publishedVersion | en |
dc.description.abstract-translated | Arc-length or natural parametrization of curves traverses the shape with unit speed, enabling uniform sampling and straightforward manipulation of functions defined on the geometry. However, Farouki and Sakkalis proved that it is impossible to parametrize a plane or space curve as a rational polynomial of its arc-length, except for the straight line. Nonetheless, it is possible to obtain approximate natural parameterizations that are exact up to any epsilon. If the given family of curves possesses a small number of scalar degrees of freedom, this results in simple approximation formulae applicable in high-performance scenarios. To demonstrate this, we consider the problem of finding the natural parametrization of ellipses and cycloids. This requires the inversion of elliptic integrals of the second kind. To this end, we formulate a two-dimensional approximation problem based on machine-epsilon exact Chebhysev proxies for the exact solutions. We also derive approximate low-rank and low-degree rational natural parametrizations via singular value decomposition. The resulting formulae have minimal memory and computational footprint, making them ideal for computer graphics applications. | en |
dc.subject.translated | curves | en |
dc.subject.translated | approximation | en |
dc.subject.translated | Arc-length parametrization | en |
dc.subject.translated | natural parametrization | en |
dc.identifier.doi | https://www.doi.org/10.24132/CSRN.3301.91 | |
dc.type.status | Peer-reviewed | en |
Vyskytuje se v kolekcích: | WSCG 2023: Full Papers Proceedings |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
G41-full.pdf | Plný text | 4,7 MB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/54436
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.