Full metadata record
DC pole | Hodnota | Jazyk |
---|---|---|
dc.contributor.author | Petrášová, Iveta | |
dc.contributor.author | Karban, Pavel | |
dc.date.accessioned | 2023-12-11T11:00:08Z | - |
dc.date.available | 2023-12-11T11:00:08Z | - |
dc.date.issued | 2023 | |
dc.identifier.citation | PETRÁŠOVÁ, I. KARBAN, P. Solving evolutionary problems using recurrent neural networks . JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, roč. 426, č. July 2023, s. nestránkováno. ISSN: 0377-0427 | cs |
dc.identifier.issn | 0377-0427 | |
dc.identifier.uri | 2-s2.0-85147854346 | |
dc.identifier.uri | http://hdl.handle.net/11025/54959 | |
dc.format | ||
dc.format | 10 s. | cs |
dc.format.mimetype | application/pdf | |
dc.language.iso | ||
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.relation.ispartofseries | Journal Of Computational And Applied Mathematics | en |
dc.rights | © Elsevier | en |
dc.title | Solving evolutionary problems using recurrent neural networks | en |
dc.type | článek | cs |
dc.type | article | en |
dc.rights.access | openAccess | en |
dc.type.version | publishedVersion | en |
dc.description.abstract-translated | A technique for flexible control of induction baking of electrically non-conductive layers (paints, varnishes, resins, etc.) is presented, based on the temperature prediction. As the numerical solution of the full model of the process takes a long time, it is necessary to approximate it with a suitable equivalent model. In this case, recurrent neural networks (RNNs) prove to be a powerful tool for solving the task practically online and providing the input data to control the field current fast enough. The methodology was first tested to predict the current based on the knowledge of the voltage, which can be determined from the analytical solution of the ordinary differential equation that describes the feeding circuit. Subsequently, the methodology was implemented on a system for baking non-conductive layers. | en |
dc.subject.translated | evolutionary problem | en |
dc.subject.translated | prediction | en |
dc.subject.translated | recurrent neural networks | en |
dc.subject.translated | LSTM | en |
dc.subject.translated | induction heating | en |
dc.subject.translated | numerical modeling | en |
dc.identifier.doi | 10.1016/j.cam.2023.115091 | |
dc.type.status | ||
dc.type.status | Peer-reviewed | en |
dc.identifier.document-number | 944208200001 | |
dc.identifier.obd | 43940812 | |
dc.project.ID | SGS-2021-011/Rozvoj technik snižování řádu systému v elektrotechnických aplikacích | cs |
Vyskytuje se v kolekcích: | Články / Articles (RICE) Články / Articles (KEP) OBD |
Soubory připojené k záznamu:
Soubor | Velikost | Formát | |
---|---|---|---|
Petrasova_1-s2.0-S0377042723000353-main.pdf | 1,22 MB | Adobe PDF | Zobrazit/otevřít Vyžádat kopii |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/54959
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.