Název: Calculation of the decomposition coefficients for plane contact problem kernel in the orthonormal basis
Autoři: Kazakov, Kirill E.
Citace zdrojového dokumentu: Applied and Computational Mechanics. 2024, vol. 18, no. 1, p. 55-64.
Datum vydání: 2024
Nakladatel: University of West Bohemia
Typ dokumentu: článek
article
URI: http://hdl.handle.net/11025/55654
ISSN: 1802-680X (Print)
2336-1182 (Online)
Klíčová slova: ortonormální základ;nevlastní integrály;numericko-analytické metody;speciální funkce;kontakt
Klíčová slova v dalším jazyce: orthonormal basis;improper integrals;numerical-analytical methods;special functions;contact
Abstrakt v dalším jazyce: Analytical solutions of some contact problems are infinite functional series according to the system of basic functions. When constructing such solutions, it becomes necessary to represent the kernels of integral equations describing the process of interaction in the form of two-dimensional series on a given basis. Often the kernels have a rather complex appearance, therefore, the process of finding the decomposition coefficients is a rather complex and labor-intensive process, on which the accuracy and speed of obtaining final results depend. The paper proposes a calculation method that allows calculating the coefficients of decomposition of the kernels of plane contact problems according to a special orthonormal basis that takes into account the features of contacting bodies. Other approximate formulas are also derived for the special case when coating characteristics are constant. Based on the received presentation, conclusions and recommendations are formulated.
Práva: University of West Bohemia. All rights reserved.
Vyskytuje se v kolekcích:Volume 18, number 1 (2024)
Volume 18, number 1 (2024)

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
834-4964-1-PB.pdfPlný text247,25 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/55654

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.