Název: | Predikce materiálových vlastností vzorků vyráběných procesem\\ válcování |
Další názvy: | Prediction of material properties of samples produced by the rolling process |
Autoři: | Papazian, Valentin |
Vedoucí práce/školitel: | Šmídl Luboš, Ing. Ph.D. |
Oponent: | Polák Filip, Ing. |
Datum vydání: | 2024 |
Nakladatel: | Západočeská univerzita v Plzni |
Typ dokumentu: | diplomová práce |
URI: | http://hdl.handle.net/11025/55796 |
Klíčová slova: | strojové učení;datová analýza;předzpracování dat;válcování;prediktivní analýza;učení s učitelem. |
Klíčová slova v dalším jazyce: | machine learning;data analysis;preprocessing;rolling;predictive analysis;supervised learning. |
Abstrakt: | Tato diplomová práce se zabývá vývojem modelu pro efektivní predikci síly potřebné k válcování plechů, což je klíčový aspekt v procesu výroby kovových materiálů. Využívá metody strojového učení a provádí rozsáhlou analýzu dat, zkoumá různé algoritmy, včetně lineární regrese, k-Nearest Neighbors (kNN) a stromových metod. Data pro analýzu byla poskytnuta společností PT Solutions Worldwide (PTSW) a obsahují údaje z válcovny hliníku za studena. Přesné predikce mají za cíl nejen snížit výrobní náklady, ale také zvýšit kvalitu a konzistenci finálních produktů. Práce dále identifikuje potenciální směry pro budoucí výzkum, jako je testování modelů na rozšířených a diverzifikovaných datasetech nebo vytvoření ensemble modelů. Testování algoritmů strojového učení s různými předzpracováními dat odhalilo, že model kNN s logaritmickým předzpracováním dat je pro tuto specifickou úlohu nejvhodnější, dosahující MAPE 6.35 %. Tato studie přináší informace o integraci strojového učení do průmyslových procesů a nastiňuje možnosti jejich dalšího vývoje a optimalizace. |
Abstrakt v dalším jazyce: | This thesis focuses on the development of a predictive model for effectively forecasting the force required for rolling sheet metal, a key aspect in the production process of metallic materials. It utilizes machine learning methods and conducts extensive data analysis, examining various algorithms, including linear regression, k-Nearest Neighbors (kNN), and tree-based methods. The data for analysis was provided by PT Solutions Worldwide (PTSW). Accurate predictions aim not only to reduce manufacturing costs but also to enhance the quality and consistency of the final products. The work further identifies potential directions for future research, such as testing models on expanded and diversified datasets or creating ensemble models. Testing machine learning algorithms with various data preprocessing revealed that the kNN model with logarithmic data preprocessing is the most suitable for this specific task, achieving a MAPE of 6.35 %. This study provides insights into the integration of machine learning into industrial processes and outlines possibilities for their further development and optimization. |
Práva: | Plný text práce je přístupný bez omezení |
Vyskytuje se v kolekcích: | Diplomové práce / Theses (KKY) |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
DP_Papazian.pdf | Plný text práce | 2,34 MB | Adobe PDF | Zobrazit/otevřít |
PosudekOponentaSTAG-PolakF-291226.pdf | Posudek oponenta práce | 60,42 kB | Adobe PDF | Zobrazit/otevřít |
PosudekVedoucihoSTAG-SmidlL-53843.pdf | Posudek vedoucího práce | 60,08 kB | Adobe PDF | Zobrazit/otevřít |
ProtokolSPrubehemObhajobySTAG.pdf | Průběh obhajoby práce | 39,81 kB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/55796
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.