Název: | A proposal of anomaly detection method based on natural data augmentation in the Eigenspace |
Autoři: | Murakami, Naoki Hiramatsu, Naoto Kobayashi, Hiroki Akizuki, Shuichi Hashimoto, Manabu |
Citace zdrojového dokumentu: | Journal of WSCG. 2024, vol. 32, no. 1-2, p. 91-100. |
Datum vydání: | 2024 |
Nakladatel: | Václav Skala - UNION Agency |
Typ dokumentu: | článek article |
URI: | http://hdl.handle.net/11025/57348 |
ISSN: | 1213 – 6972 1213 – 6980 (CD-ROM) 1213 – 6964 (on-line) |
Klíčová slova: | detekce anomálií;strojové učení;generování obrazu;augmentace dat;analýza hlavních komponent;vlastní prostor |
Klíčová slova v dalším jazyce: | anomaly detection;machine learning;image generation;data augmentation;principal component analysis;eigenspace |
Abstrakt v dalším jazyce: | This paper proposes a natural data augmentation method and an anomaly removal artificial neural network for accurate anomaly detection. Anomaly detection is important because the provision of high-quality products is vital in the manufacturing industry. However, it is difficult to obtain a sufficient number of anomaly samples for the detection, which represents a significant challenge when it comes to achieving accurate anomaly detection by machine learning. General data augmentation methods generate new anomaly images by combining normal images and anomaly images. As an alternative, this paper describes a method that generates new anomaly images by using the Eigenspace. More natural anomaly images are generated than with general data augmentation methods. This paper also proposes an anomaly removal neural network that utilizes this natural data augmentation. The results of an anomaly detection experiment showed that the AUC of 94.7% was achieved for the capsule dataset when using anomaly images generated by the proposed data augmentation for training the anomaly removal neural network. This is 1.3% higher than the state-of-the-art data augmentation method that has been utilized for training the neural network. In the case of the pill dataset, AUC of 99.4% was achieved by proposed method. This is 3.0% higher than the state-of-the-art data augmentation method that has been utilized for training the neural network. The results of a series of experiments demonstrated that anomaly images generated by the proposed data augmentation are effective for training the neural network. |
Práva: | © Václav Skala - UNION Agency © Václav Skala - UNION Agency |
Vyskytuje se v kolekcích: | Volume 32, number 1-2 (2024) |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
C71-2024.pdf | Plný text | 1,88 MB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/57348
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.