Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorLakshmiprabha, N. S.
dc.contributor.authorSantos, Alexander
dc.contributor.authorBeltramello, Olga
dc.contributor.editorSkala, Václav
dc.contributor.editorGavrilova, Marina
dc.date.accessioned2018-04-09T08:41:39Z-
dc.date.available2018-04-09T08:41:39Z-
dc.date.issued2015
dc.identifier.citationWSCG 2015: full papers proceedings: 23rd International Conference in Central Europeon Computer Graphics, Visualization and Computer Visionin co-operation with EUROGRAPHICS Association, p. 211-218.en
dc.identifier.isbn978-80-86943-65-7 (print)
dc.identifier.isbn978-80-86943-61-9 (CD-ROM)
dc.identifier.issn2464–4617 (print)
dc.identifier.issn2464–4625 (CD-ROM)
dc.identifier.uriwscg.zcu.cz/WSCG2015/CSRN-2501.pdf
dc.identifier.urihttp://hdl.handle.net/11025/29519
dc.description.abstractAugmented reality (AR) is a technology that overlays virtual 3D content in the real world to enhance a user’s perception. This AR virtual content must be registered properly with less jitter, drift or lag to create a more immersive feeling for the user. The object pose can be determined using different pose estimation techniques using the data from sensors cameras and inertial measurement units (IMUs). Camera based vision algorithms detect the features in a given environment to calculate the relative pose of an object with respect to the camera. However, these algorithms often take a longer time to calculate the pose and can only operate at lower rates. On the other hand, an IMU can provide fast data rates from which an absolute pose can be determined with fewer calculations. This pose is usually subjected to drift which leads to registration errors. The IMU drift can be substantially reduced by fusing periodic pose updates from a vision algorithm. This work investigates various factors that affect the rendering registration error and to find the trade-off between the vision algorithm pose update rate and the IMU drift to efficiently reduce this registration error. The experimental evaluation details the impact of IMU drift with different vision algorithm pose update rates. The results show that the careful selection of vision algorithm pose updates not only reduces IMU drift but also reduces the registration error. Furthermore, this reduces the computation required for processing the vision algorithm.en
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.relation.ispartofseriesWSCG 2015: full papers proceedingsen
dc.rights© Václav Skala - UNION Agencyen
dc.subjectrozšířená realitacs
dc.subjectodhad pozicecs
dc.subjectinerciální měřící jednotkacs
dc.subjectsledování značkycs
dc.subjectsenzorová fúzecs
dc.subjectchyba při registracics
dc.titleAn efficient reduction of IMU drift for registration error free augmented reality maintenance applicationen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.subject.translatedaugmented realityen
dc.subject.translatedpose estimationen
dc.subject.translatedinertial measurement uniten
dc.subject.translatedmarker trackingen
dc.subject.translatedsensor fusionen
dc.subject.translatedregistration erroren
dc.type.statusPeer-revieweden
Vyskytuje se v kolekcích:WSCG 2015: Full Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Lakshmiprabha.pdfPlný text989,4 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/29519

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.