Název: | Hyperspectral image xlassification using a general NFLE transformation with kernelization and fuzzification |
Autoři: | Chen, Ying-Nong Wang, Yu-Chen Han, Chin-Chuan Fan, Kuo-Chin |
Citace zdrojového dokumentu: | WSCG '2015: short communications proceedings: The 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2015 in co-operation with EUROGRAPHICS: University of West Bohemia, Plzen, Czech Republic8-12 June 2015, p. 75-82. |
Datum vydání: | 2015 |
Nakladatel: | Václav Skala - UNION Agency |
Typ dokumentu: | konferenční příspěvek conferenceObject |
URI: | wscg.zcu.cz/WSCG2015/CSRN-2502.pdf http://hdl.handle.net/11025/29668 |
ISBN: | 978-80-86943-66-4 |
ISSN: | 2464-4617 |
Klíčová slova: | hyperspektrální klasifikace obrazů;rozmanité učení;kernelizace;fuzzifikace |
Klíčová slova v dalším jazyce: | hyperspectral image classification;manifold learning;kernelization;fuzzification |
Abstrakt: | Nearest feature line (NFL) embedding (NFLE) is an eigenspace transformation algorithm based on the NFL strategy. Based on this strategy, the NFLE algorithm generates a low dimensional space in which the local structures of samples in the original high dimensional space are preserved. Though NFLE has successfully demonstrated its discriminative capability, the non-linear manifold structure cannot be structured more efficiently by linear scatters using the linear NFLE method. To address this, a general NFLE transformation, called fuzzy/kernel NFLE, is proposed for feature extraction in which kernelization and fuzzification are simultaneously considered. In the proposed scheme, samples are projected into a kernel space and assigned larger weights based on that of their neighbors according to their neighbors. In that way, not only is the non-linear manifold structure preserved, but also are the discriminative powers of classifiers increased. The proposed method is compared with various state-of-the-art methods to evaluate the performance by several benchmark data sets. From the experimental results, the proposed FKNFLE outperformed the other, more conventional, methods. |
Práva: | © Václav Skala - UNION Agency |
Vyskytuje se v kolekcích: | WSCG '2015: Short Papers Proceedings |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
Chen.pdf | Plný text | 284,44 kB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/29668
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.