Název: Application of vision-based particle filter and visual odometry for UAV localization
Autoři: Jurevičius, Rokas
Marcinkevičius, Virginijus
Citace zdrojového dokumentu: WSCG '2017: short communications proceedings: The 25th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2016 in co-operation with EUROGRAPHICS: University of West Bohemia, Plzen, Czech RepublicMay 29 - June 2 2017, p. 67-71.
Datum vydání: 2017
Nakladatel: Václav Skala - UNION Agency
Typ dokumentu: konferenční příspěvek
conferenceObject
URI: wscg.zcu.cz/WSCG2017/!!_CSRN-2702.pdf
http://hdl.handle.net/11025/29736
ISBN: 978-80-86943-45-9
ISSN: 2464-4617
Klíčová slova: lokalizace filtru částic;GPS-odmítnutá navigace;vizuální odometry;KLD vzorkování;korelační koeficient
Klíčová slova v dalším jazyce: particle filter localization;GPS-denied navigation;visual odometry;KLD sampling;correlation coefficient
Abstrakt: Conventional UAV (abbr. Unmanned Air Vehicle) auto-pilot systems uses GPS signal for navigation. While the GPS signal is lost, jammed or the UAV is navigating in GPS-denied environment conventional autopilot systems fail to navigate safely. UAV should estimate it’s own position without the need of external signals. Localization, the process of pose estimation relatively to known environment, may solve the problem of navigation without GPS signal. Downward looking camera on a UAV may be used to solve pose estimation problem in combination with visual odometry and other sensor data. In this paper a vision-based particle filter application is proposed to solve GPS-denied UAV localization. The application uses visual odometry for motion estimation, correlation coefficient for apriori known map image matching with aerial imagery, KLD (abbr. Kueller-Leiblach distance) sampling for particle filtering. Research using data collected during real UAV flight is performed to investigate: UAV heading influence on correlation coefficient values when matching aerial imagery with the map and measure localization accuracy compared to conventional GPS system and state-of-the-art odometry.
Práva: © Václav Skala - UNION Agency
Vyskytuje se v kolekcích:WSCG '2017: Short Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
Jurevicius.pdfPlný text792,23 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/29736

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.