Title: Evaluation of microstructural and thermal properties of sol-gel derived silica-titania based porous glasses
Authors: Deshmukh, Kalim
Kovařík, Tomáš
Křenek, Tomáš
Citation: JIRKOVÁ, Hana ed.; JENÍČEK, Štepán ed. Proceedings PING 2019: modern trends in material engineering: 10.-13.09.2019, Pilsen. 1. vyd. Plzeň: University of West Bohemia, 2019, s. 98. ISBN 978-80-261-0879-5.
Issue Date: 2019
Publisher: University of West Bohemia
Document type: konferenční příspěvek
conferenceObject
URI: http://hdl.handle.net/11025/35265
ISBN: 978-80-261-0879-5
Keywords: sol-gel metoda;Si-Ti brýle;mikrostruktura;tepelné vlastnosti
Keywords in different language: sol-gel method;Si-Ti glasses;microstructure;thermal properties
Abstract in different language: In recent years, the synthesis of sol-gel derived porous glasses has drawn widespread attention owing to the convenience and versatility of the sol-gel method. The sol-gel synthesis process mainly involves hydrolysis and condensation of precursors followed by drying and stabilization. The characteristics such as pore structure, morphology and compositions of sol-gel derived glasses significantly affect their final properties. In the present study, silica-titania (Si-Ti) based porous glasses with different compositions were synthesized using the sol-gel method. Metal alkoxides such as tetraethoxysilane (TEOS) and titanium isopropoxide (TIP) were used as a source as the source for silica and titania respectively. Nitric acid (HNO3) was used as catalysts to trigger the hydrolysis reaction and polyethylene glycol (PEG) was used as a polymeric component to induce phase separation. The influence of different processing parameters on the microstructural and thermal properties was investigated. The microstructure of the synthesized Si-Ti based porous glasses was investigated using Scanning electron microscopy (SEM) and the thermal characteristics were evaluated using thermogravimetric analysis (TGA) and thermomechanical analysis (TMA). The main objective of this study is to ascertain the application of sol-gel derived Si-Ti porous glasses as a potential biomaterial for bone tissue regeneration. To understand this facet of Si-Ti porous glasses, the biological performance will be investigated and their porous architecture will be explored in relation to their interaction with the bioactive nanoparticles.
Rights: © University of West Bohemia
Appears in Collections:Proceedings PING 2019: modern trends in material engineering
Konferenční příspěvky / Conference Papers (CTM)
Proceedings PING 2019: modern trends in material engineering

Files in This Item:
File Description SizeFormat 
Deshmukh.pdfPlný text180,77 kBAdobe PDFView/Open


Please use this identifier to cite or link to this item: http://hdl.handle.net/11025/35265

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.