Název: | Deep Learning-based Overlapping-Pigs Separation by Balancing Accuracy and Execution Time |
Autoři: | Lee, Hanhaesol Sa, Jaewon Chung, Yongwha Park, Daihee Kim, Hakjae |
Citace zdrojového dokumentu: | WSCG 2019: full papers proceedings: 27. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 17-25. |
Datum vydání: | 2019 |
Nakladatel: | Václav Skala - UNION Agency |
Typ dokumentu: | konferenční příspěvek conferenceObject |
URI: | http://hdl.handle.net/11025/35605 |
ISBN: | 978-80-86943-37-4 (CD/-ROM) |
ISSN: | 2464–4617 (print) 2464-4625 (CD/DVD) |
Klíčová slova: | sledování prasat;překrývající se prasata;oddělení;hluboké učení;YOLO;You Only Look Once |
Klíčová slova v dalším jazyce: | pig monitoring;overlapping-pigs;separation;deep learning;YOLO;You Only Look Once |
Abstrakt v dalším jazyce: | The crowded environment of a pig farm is highly vulnerable to the spread of infectious diseases such as foot-andmouth disease, and studies have been conducted to automatically analyze behavior of pigs in a crowded pig farm through a video surveillance system using a top-view camera. Although it is required to correctly separate overlapping-pigs for tracking each individual pigs, extracting the boundaries of each pig fast and accurately is a challenging issue due to the complicated occlusion patterns such as X shape and T shape. In this study, we propose a fast and accurate method to separate overlapping-pigs not only by exploiting the advantage (i.e., one of the fast deep learning-based object detectors) of You Only Look Once, YOLO, but also by overcoming the disadvantage (i.e., the axis aligned bounding box-based object detector) of YOLO with the test-time data augmentation of rotation. Experimental results with the occlusion patterns between the overlapping-pigs show that the proposed method can provide better accuracy and faster processing speed than one of the state-of-the-art deep learningbased segmentation techniques such as Mask R-CNN (i.e., the performance improvement over Mask R-CNN was about 11 times, in terms of the accuracy/processing speed performance metrics). |
Práva: | © Václav Skala - UNION Agency |
Vyskytuje se v kolekcích: | WSCG 2019: Full Papers Proceedings |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
Lee.pdf | Plný text | 1,09 MB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/35605
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.