Title: | Fungi Recognition: A Practical Use Case |
Authors: | Šulc, Milan Picek, Lukáš Matas, Jiří Jeppesen, Thomas Heilmann-Clausen, Jacob |
Citation: | ŠULC, M. PICEK, L. MATAS, J. JEPPESEN, T. HEILMANN-CLAUSEN, J.Fungi Recognition: A Practical Use Case. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Red Hook, NY: IEEE, 2020. s. 2305-2313. ISBN 978-1-72816-553-0, ISSN 2472-6737. |
Issue Date: | 2020 |
Publisher: | IEEE |
Document type: | konferenční příspěvek conferenceObject |
URI: | 2-s2.0-85085504154 http://hdl.handle.net/11025/42937 |
ISBN: | 978-1-72816-553-0 |
ISSN: | 2472-6737 |
Keywords in different language: | visual recognition, fungi, web- and mobile interfaces |
Abstract in different language: | The paper presents a system for visual recognition of1394 fungi species based on deep convolutional neuralnetworks and its deployment in a citizen-science project.The system allows users to automatically identify observedspecimens, while providing valuable data to biologists andcomputer vision researchers. The underlying classifica-tion method scored first in the FGVCx Fungi ClassificationKaggle competition organized in connection with the Fine-Grained Visual Categorization (FGVC) workshop at CVPR2018. We describe our winning submission and evaluate alltechnicalities that increased the recognition scores, and dis-cuss the issues related to deployment of the system via theweb- and mobile- interfaces. |
Rights: | © IEEE |
Appears in Collections: | Postprinty / Postprints (KKY) Postprinty / Postprints (NTIS) OBD |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Sulc_Fungi_Recognition_A_Practical_Use_Case_WACV_2020_paper.pdf | 1,75 MB | Adobe PDF | View/Open |
Please use this identifier to cite or link to this item:
http://hdl.handle.net/11025/42937
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.