Full metadata record
DC pole | Hodnota | Jazyk |
---|---|---|
dc.contributor.author | Lipovits, Ágnes | |
dc.contributor.author | Czúni, László | |
dc.contributor.author | Tömördi, Katalin | |
dc.contributor.author | Vörösházi, Zsolt | |
dc.contributor.editor | Skala, Václav | |
dc.date.accessioned | 2021-09-01T08:35:37Z | |
dc.date.available | 2021-09-01T08:35:37Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | WSCG 2021: full papers proceedings: 29. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 309-316. | en |
dc.identifier.isbn | 978-80-86943-34-3 | |
dc.identifier.issn | 2464-4617 | |
dc.identifier.issn | 2464–4625(CD/DVD) | |
dc.identifier.uri | http://hdl.handle.net/11025/45037 | |
dc.format | 8 s. | cs |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | en |
dc.publisher | Václav Skala - UNION Agency | cs |
dc.rights | © Václav Skala - UNION Agency | cs |
dc.subject | sledování objektu | cs |
dc.subject | detekce objektů | cs |
dc.subject | Maďarská metoda | cs |
dc.subject | RetinaNet | cs |
dc.title | Multiple Object Tracking by Bounding Boxes Without Using Texture Information and Optical Flow | en |
dc.type | conferenceObject | en |
dc.type | konferenční příspěvek | cs |
dc.rights.access | openAccess | en |
dc.type.version | publishedVersion | en |
dc.description.abstract-translated | Object tracking is a key task in many applications using video analytics. While there is a huge number of algo-rithms to track objects, there is still a need for new methods to solve the correspondence problem under certaincircumstances. In our article, we assume a very typical but still open scenario: a still image object detector hasalready identified the objects to be tracked; thus, we have object labels, confidence values, and bounding boxes ineach video frame captured at a low sampling rate. That is, optical flow methods difficult to be applied (also dueto bad lighting conditions, cluttered or homogeneous areas and strong ego-motion), and moreover, many objectslook similar (having the same category labels). Our proposed approach is based on the Hungarian method andincorporates the above information into the cost function evaluating the possible pairings of objects. To considerthe uncertainty of the detector, the elements of the confusion matrix also contribute to the cost of pairs, as wellas the probability of spatial translations based on prior observations. As a use case, we apply the algorithm to adata-set, where images were captured from onboard cameras and traffic signs were detected by RetinaNet. Weanalyze the performance with different parameter settings. | en |
dc.subject.translated | object tracking | en |
dc.subject.translated | object detection | en |
dc.subject.translated | Hungarian method | en |
dc.subject.translated | RetinaNet | en |
dc.identifier.doi | https://doi.org/10.24132/CSRN.2021.3101.34 | |
dc.type.status | Peer-reviewed | en |
Vyskytuje se v kolekcích: | WSCG 2021: Full Papers Proceedings |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
K02.pdf | Plný text | 1,74 MB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/45037
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.