Název: | Neural Criticality: Validation of Convolutional Neural Networks |
Autoři: | Diviš, Václav Hrúz, Marek |
Citace zdrojového dokumentu: | DIVIŠ, V. HRÚZ, M. Neural Criticality: Validation of Convolutional Neural Networks. In CEUR Workshop Proceedings. Neuveden: CEUR-WS, 2021. s. nestránkováno. ISBN: neuvedeno , ISSN: 1613-0073 |
Datum vydání: | 2021 |
Nakladatel: | CEUR-WS |
Typ dokumentu: | konferenční příspěvek ConferenceObject |
URI: | 2-s2.0-85101278318 http://hdl.handle.net/11025/47141 |
ISBN: | neuvedeno |
ISSN: | 1613-0073 |
Klíčová slova v dalším jazyce: | Criticality;Validation;Convolutional Neural Networks |
Abstrakt v dalším jazyce: | The black-box behavior of Convolutional Neural Networks is one of the biggest obstacles to the development of a standardized validation process. Methods for analyzing and validating neural networks currently rely on approaches and metrics provided by the scientific community without considering functional safety requirements. However, automotive norms, such as ISO26262 and ISO/PAS21448, do require a comprehensive knowledge of the system and of the working environment in which the network will be deployed. In order to gain such a knowledge and mitigate the natural uncertainty of probabilistic models, we focused on investigating the influence of filter weights on the classification confidence in Single Point Of Failure fashion. We laid the theoretical foundation of a method called the Neurons’ Criticality Analysis. This method, as described in this article, helps evaluate the criticality of the tested network and choose related plausibility mechanism. Copyright © 2021, for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). |
Práva: | Plný text je přístupný v rámci univerzity přihlášeným uživatelům. © authors |
Vyskytuje se v kolekcích: | Konferenční příspěvky / Conference Papers (KKY) OBD |
Soubory připojené k záznamu:
Soubor | Velikost | Formát | |
---|---|---|---|
Divis_Neural_Criticality_SafeAI_2021.pdf | 485,57 kB | Adobe PDF | Zobrazit/otevřít Vyžádat kopii |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/47141
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.