Title: | Specific Data Sampling and Filtering Helps to Detect and Isolate Periodic Disturbances |
Authors: | Ettler, Pavel Puchr, Ivan |
Citation: | ETTLER, P. PUCHR, I. Specific Data Sampling and Filtering Helps to Detect and Isolate Periodic Disturbances. In Proceedings of the 30th Mediterranean Conference on Control and Automation (MED 2022). Vouliagmeni, Greece: IEEE, 2022. s. 755-760. ISBN: 978-1-66540-673-4 , ISSN: neuvedeno |
Issue Date: | 2022 |
Publisher: | IEEE |
Document type: | konferenční příspěvek ConferenceObject |
URI: | 2-s2.0-85136250945 http://hdl.handle.net/11025/50801 |
ISBN: | 978-1-66540-673-4 |
ISSN: | neuvedeno |
Keywords in different language: | digital filtering;Fault detection and isolation;FFT;modelling;predictive maintenance;rolling mills |
Abstract in different language: | The Fast Fourier Transform is the unique tool enabling to engage the frequency domain analysis in detection and isolation of periodic disturbances in industrial processes containing rotating elements. Nevertheless, there exist particular problems where the time-domain examination of oscillations can provide equally or more accurate results with less effort. Specific data sampling, filtering and process modelling are introduced in the paper with the aim to classify sources of oscillations in the process of cold rolling. Although the FFT may not be part of the method itself, its use allows to illustrate the presented research. |
Rights: | Plný text je přístupný v rámci univerzity přihlášeným uživatelům. © IEEE |
Appears in Collections: | Konferenční příspěvky / Conference papers (NTIS) OBD |
Files in This Item:
File | Size | Format | |
---|---|---|---|
article_MED2022_EtPu.pdf | 1,28 MB | Adobe PDF | View/Open Request a copy |
Please use this identifier to cite or link to this item:
http://hdl.handle.net/11025/50801
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.