Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorCiapas, Bernardas
dc.contributor.authorTreigys, Povilas
dc.contributor.editorSkala, Václav
dc.date.accessioned2023-10-15T13:03:21Z
dc.date.available2023-10-15T13:03:21Z
dc.date.issued2023
dc.identifier.citationWSCG 2023: full papers proceedings: 1. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 21-28.en
dc.identifier.isbn978-80-86943-32-9
dc.identifier.issn2464–4617 (print)
dc.identifier.issn2464–4625 (CD/DVD)
dc.identifier.urihttp://hdl.handle.net/11025/54395
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencyen
dc.rights© Václav Skala - UNION Agencyen
dc.subjectobrázky samoobslužné pokladnycs
dc.subjectověření třídycs
dc.subjectztráta středucs
dc.subjectdetekce odlehlých hodnotcs
dc.titleSelf-Checkout Product Class Verification using Center Loss approachen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedThe traditional image classifiers are not capable to verify if samples belong to specified classes due to several rea sons: classifiers do not provide boundaries between in-class and out-of-class samples; although classifiers provide separation boundaries between known classes, classifiers’ latent features tend to have high intra-class variance; classifiers often predict high probabilities for out-of-distribution samples; training classifiers on unbalanced data results in bias towards over-represented classes. The nature of the class verification problem requires a different loss function than the ubiquitous cross entropy loss in traditional classifiers: input to a class verification function includes a suggested class in addition to an image. As opposed to outlier detection, space is transformed to be not only separable, but discriminative between in-class and out-of-class inputs. In this paper, class verification based on a euclidean distance from the class centre is proposed and implemented. Class centres are learnt by training on a centre loss function. The method’s effectiveness is shown on a self-checkout image dataset of 194 food retail products. The results show that a two-fold loss function is not only useful to verify class, but does not degrade classification performance - thus, the same neural network is usable both for classification and verification.en
dc.subject.translatedself-checkout imagesen
dc.subject.translatedclass verificationen
dc.subject.translatedcentre lossen
dc.subject.translatedoutlier detectionen
dc.identifier.doihttps://www.doi.org/10.24132/CSRN.3301.4
dc.type.statusPeer-revieweden
Vyskytuje se v kolekcích:WSCG 2023: Full Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
D79-full.pdfPlný text1,65 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/54395

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.