Název: | Zvyšování bezpečnosti počítačových sítí zesílenou detekcí odlehlých hodnot v datových tocích |
Další názvy: | Enhancing Computer Network Security through Improved Outlier Detection for Data Streams |
Autoři: | Heigl, Michael |
Datum vydání: | 2022 |
Nakladatel: | Západočeská univerzita v Plzni |
Typ dokumentu: | disertační práce |
URI: | http://hdl.handle.net/11025/50466 |
Klíčová slova: | síťová bezpečnost;strojové učení;detekce vniknutí;detekce odlehlých hodnot;průběžně přicházející data;online učení;učení bez učitele;volba vlastností;analýza poplachů;korelace poplachů;scénář útoku;autentizace zpráv;samoregulace |
Klíčová slova v dalším jazyce: | network security;machine learning;intrusion detection;outlier detection;streaming data;online learning;unsupervised learning;feature selection;alert analysis;alert correlation;attack scenario;message authentication;self-regulation |
Abstrakt: | V několika posledních letech se metody strojového učení (zvláště ty zabývající se detekcí odlehlých hodnot - OD) v oblasti kyberbezpečnosti opíraly o zjišťování anomálií síťového provozu spočívajících v nových schématech útoků. Detekce anomálií v počítačových sítích reálného světa se ale stala stále obtížnější kvůli trvalému nárůstu vysoce objemných, rychlých a dimenzionálních průběžně přicházejících dat (SD), pro která nejsou k dispozici obecně uznané a pravdivé informace o anomalitě. Účinná detekční schémata pro vestavěná síťová zařízení musejí být rychlá a paměťově nenáročná a musejí být schopna se potýkat se změnami konceptu, když se vyskytnou. Cílem této disertace je zlepšit bezpečnost počítačových sítí zesílenou detekcí odlehlých hodnot v datových proudech, obzvláště SD, a dosáhnout kyberodolnosti, která zahrnuje jak detekci a analýzu, tak reakci na bezpečnostní incidenty jako jsou např. nové zlovolné aktivity. Za tímto účelem jsou v práci navrženy čtyři hlavní příspěvky, jež byly publikovány nebo se nacházejí v recenzním řízení časopisů. Zaprvé, mezera ve volbě vlastností (FS) bez učitele pro zlepšování již hotových metod OD v datových tocích byla zaplněna navržením volby vlastností bez učitele pro detekci odlehlých průběžně přicházejících dat označované jako UFSSOD. Následně odvozujeme generický koncept, který ukazuje dva aplikační scénáře UFSSOD ve spojení s online algoritmy OD. Rozsáhlé experimenty ukázaly, že UFSSOD coby algoritmus schopný online zpracování vykazuje srovnatelné výsledky jako konkurenční metoda upravená pro OD. Zadruhé představujeme nový aplikační rámec nazvaný izolovaný les založený na počítání výkonu (PCB-iForest), jenž je obecně schopen využít jakoukoliv online OD metodu založenou na množinách dat tak, aby fungovala na SD. Do tohoto algoritmu integrujeme dvě varianty založené na klasickém izolovaném lese. Rozsáhlé experimenty provedené na 23 multidisciplinárních datových sadách týkajících se bezpečnostní problematiky reálného světa ukázaly, že PCB-iForest jasně překonává už zavedené konkurenční metody v 61 % případů a dokonce dosahuje ještě slibnějších výsledků co do vyváženosti mezi výpočetními náklady na klasifikaci a její úspěšností. Zatřetí zavádíme nový pracovní rámec nazvaný detekce odlehlých hodnot a rozpoznávání schémat útoku proudovým způsobem (SOAAPR), jenž je na rozdíl od současných metod schopen zpracovat výstup z různých online OD metod bez učitele proudovým způsobem, aby získal informace o nových schématech útoku. Ze seshlukované množiny korelovaných poplachů jsou metodou SOAAPR vypočítány tři různé soukromí zachovávající podpisy podobné otiskům prstů, které charakterizují a reprezentují potenciální scénáře útoku s ohledem na jejich komunikační vztahy, projevy ve vlastnostech dat a chování v čase. Evaluace na dvou oblíbených datových sadách odhalila, že SOAAPR může soupeřit s konkurenční offline metodou ve schopnosti korelace poplachů a významně ji překonává z hlediska výpočetního času . Navíc se všechny tři typy podpisů ve většině případů zdají spolehlivě charakterizovat scénáře útoků tím, že podobné seskupují k sobě. Začtvrté představujeme algoritmus nepárového kódu autentizace zpráv (Uncoupled MAC), který propojuje oblasti kryptografického zabezpečení a detekce vniknutí (IDS) pro síťovou bezpečnost. Zabezpečuje síťovou komunikaci (autenticitu a integritu) kryptografickým schématem s podporou druhé vrstvy kódy autentizace zpráv, ale také jako vedlejší efekt poskytuje funkcionalitu IDS tak, že vyvolává poplach na základě porušení hodnot nepárového MACu. Díky novému samoregulačnímu rozšíření algoritmus adaptuje svoje vzorkovací parametry na základě zjištění škodlivých aktivit. Evaluace ve virtuálním prostředí jasně ukazuje, že schopnost detekce se za běhu zvyšuje pro různé scénáře útoku. Ty zahrnují dokonce i situace, kdy se inteligentní útočníci snaží využít slabá místa vzorkování. |
Abstrakt v dalším jazyce: | Over the past couple of years, machine learning methods - especially the Outlier Detection (OD) ones - have become anchored to the cyber security field to detect network-based anomalies rooted in novel attack patterns. Due to the steady increase of high-volume, high-speed and high-dimensional Streaming Data (SD), for which ground truth information is not available, detecting anomalies in real-world computer networks has become a more and more challenging task. Efficient detection schemes applied to networked, embedded devices need to be fast and memory-constrained, and must be capable of dealing with concept drifts when they occur. The aim of this thesis is to enhance computer network security through improved OD for data streams, in particular SD, to achieve cyber resilience, which ranges from the detection, over the analysis of security-relevant incidents, e.g., novel malicious activity, to the reaction to them. Therefore, four major contributions are proposed, which have been published or are submitted journal articles. First, a research gap in unsupervised Feature Selection (FS) for the improvement of off-the-shell OD methods in data streams is filled by proposing Unsupervised Feature Selection for Streaming Outlier Detection, denoted as UFSSOD. A generic concept is retrieved that shows two application scenarios of UFSSOD in conjunction with online OD algorithms. Extensive experiments have shown that UFSSOD, as an online-capable algorithm, achieves comparable results with a competitor trimmed for OD. Second, a novel unsupervised online OD framework called Performance Counter-Based iForest (PCB-iForest) is being introduced, which generalized, is able to incorporate any ensemble-based online OD method to function on SD. Two variants based on classic iForest are integrated. Extensive experiments, performed on 23 different multi-disciplinary and security-related real-world data sets, revealed that PCB-iForest clearly outperformed state-of-the-art competitors in 61 % of cases and even achieved more promising results in terms of the tradeoff between classification and computational costs. Third, a framework called Streaming Outlier Analysis and Attack Pattern Recognition, denoted as SOAAPR is being introduced that, in contrast to the state-of-the-art, is able to process the output of various online unsupervised OD methods in a streaming fashion to extract information about novel attack patterns. Three different privacy-preserving, fingerprint-like signatures are computed from the clustered set of correlated alerts by SOAAPR, which characterize and represent the potential attack scenarios with respect to their communication relations, their manifestation in the data's features and their temporal behavior. The evaluation on two popular data sets shows that SOAAPR can compete with an offline competitor in terms of alert correlation and outperforms it significantly in terms of processing time. Moreover, in most cases all three types of signatures seem to reliably characterize attack scenarios to the effect that similar ones are grouped together. Fourth, an Uncoupled Message Authentication Code algorithm - Uncoupled MAC - is presented which builds a bridge between cryptographic protection and Intrusion Detection Systems (IDSs) for network security. It secures network communication (authenticity and integrity) through a cryptographic scheme with layer-2 support via uncoupled message authentication codes but, as a side effect, also provides IDS-functionality producing alarms based on the violation of Uncoupled MAC values. Through a novel self-regulation extension, the algorithm adapts its sampling parameters based on the detection of malicious actions on SD. The evaluation in a virtualized environment clearly shows that the detection rate increases over runtime for different attack scenarios. Those even cover scenarios in which intelligent attackers try to exploit the downsides of sampling. |
Práva: | Plný text práce je přístupný bez omezení |
Vyskytuje se v kolekcích: | Disertační práce / Dissertations (KIV) |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
PhD_Thesis_Michael_Heigl.pdf | Plný text práce | 11,76 MB | Adobe PDF | Zobrazit/otevřít |
posudky-odp-Heigl.pdf | Posudek oponenta práce | 1,93 MB | Adobe PDF | Zobrazit/otevřít |
protokol-odp-heigl-STAG.pdf | Průběh obhajoby práce | 334,58 kB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/50466
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.